AMERICAN CHEMICAL JOURNAL
INDEX
1-10
1879-88
NOTICE: Return or renew all Library Materials! The Minimum Fee for each Lost Book is $50.00.

The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

DUE: 4/6/95
JAN 6 1995

L161—O-1096
GENERAL INDEX OF VOLUMES I-X
(1879-1888)

OF THE

AMERICAN

Chemical Journal

W. R. ORNDORFF, A.B., Ph.D.,
Assistant Professor of Chemistry, Cornell University.

Baltimore
1890
Press of Isaac Friedenwald,
32 S. Paca Street.
PREFACE.

After the first ten volumes of the American Chemical Journal had appeared, it was thought desirable that a general index should be prepared. Accordingly, at the suggestion of Professor Remsen, the work was taken up and completed by the author.

The system made use of is simple and needs but a few words to make it clear. In the Index of Authors' Names the name of the author is printed in heavy type, and the various articles published by him are arranged in chronological order under this head. The subjects are also printed in heavy type in the Index of Subjects, but here the alphabetical order is observed under each subject.

As far as possible the initials of every author are given, but in some cases it was impossible to obtain these from any source. The letters a, o, and u with the umlaut (ä, ö, ü) have been treated as a, o and u. In the case of Russian authors the same spelling has been used which occurs in the German journals. Books reviewed have been indexed under the first important word of the title. The di-substitution products of benzene have been indexed under o, m and p according as they are ortho-, meta- or para-, the prefix being regarded as a necessary part of the word.

Every precaution has been taken to avoid errors.

W. R. Orndorff.

Cornell University, March, 1890.
CORRECTIONS.

Page 42, line 40 from top, for 352 substitute 235.
" 45, " 39 " " 70 " 71.
" 46, " 14 " " 480 " 418.
INDEX OF AUTHORS’ NAMES.

A

Abel, F. A. Colliery explosions,—III, 298.
Adams, B. F., Jr. See Van Nuys, T. C.
Allary, E. Volumetric determination of iodine in varec,—II, 68.
Andrews, C. W. See Hill, H. B. See Norton, L. M.
Anrep, B. v. See Weyl, T.
Anschütz, R. Concerning the isomerism of fumaric and maleic acids,—IX, 253.
— and Moore, G. D. Action of phosphorus pentachloride on the three monohydroxy-benzoic acids,—X, 296.
— and Selden, C. C. Contributions to our knowledge of Glaser’s two monobrom-cinnamic acids,—IX, 379.
— and Wirtz, Q. On the anilides of fumaric and maleic acids and on phenyl aspartic acid,—IX, 235.
Armsby, H. P. Determination of albuminoids in hay and coarse fodders, —II, 81.
Reports on agricultural science,—II, 339, 426; III, 145; IV, 146, 218.
— and Short, F. G. Apparatus for Kjeldahl’s method of nitrogen determination,—VIII, 323.
Atwater, W. O. Determination of chlorine in organic compounds,—III, 296.
On the acquisition of atmospheric nitrogen by plants,—VI, 365.
Liberation of nitrogen from its compounds, and the acquisition of atmospheric nitrogen by plants,—VIII, 398.
On the chemistry of fish,—IX, 421; X, 1.
Sources of error in nitrogen determinations by soda-lime method,—X, 197, 262.
— and Ball, E. M. Sources of loss in the determination of nitrogen by soda-lime,—X, 113.

Aubin, E. See Muntz, A.

Austen, P. T. Note on the precipitation of stannic oxide from sodium stannate,—IV, 285.

Constant water-bath,—V, 141.

— and Chamberlain, J. C. Ammonium ferrous sulphate as a reagent for nitric acid,—V, 209.

— and Hurff, G. B. On the reduction of ferric solutions,—IV, 282.

— and Smith, F. S. Dinitrosulphocyanbenzene,—VIII, 89.

— and Wilber, F. A. On the precipitation of titanic acid,—IV, 211.

On a tube stand for nesslerising,—IV, 313.

The purification of ammonium fluoride,—V, 389.

B

Babitt, H. C. Manganese in steel and iron,—IX, 58.

Bachman, I. A. Oxidation of solutions of sulphurous acid and sulphites,—X, 49.

Arsenic nitride,—X, 42.

Analysis of nickeliferous talc,—X, 45.

Freezing mixture,—X, 45.

Bachmeyer, W. Sensitive reagent for caustic alkalies,—IV, 59.

Baeyer, A. Artificial indigo,—IV, 67.

Baker, R. W. Analysis of a beryl from Amelia County, Va.,—VII, 175.

Baldy. See Péan.

Ball, E. M. See Atwater, W. O.

Ballo, M. Carbonic acid,—V, 69.

Bardwell, F. L. See Norton, L. M.

Barth, L. On carboxytrartronic acid and the structural formula of benzene,—III, 154.

Bauer, O. See Classen, A.

Bayley, W. S. See Morse, H. N. See Remsen, I.

Beamer, M., and Clark, F. W. New salts of aniline,—I, 151.

Lithium picrate,—I, 153.

Relative stability of certain organic salts,—II, 329.

Becke, F. Etched figures and arrangement of atoms,—VIII, 222.

Becker, P. See Michaelis, A.

Behr, A. Crystallised grape sugar,—IV, 239.

Béilstein, F. Flashing point of petroleum,—V, 459.

Electrolytic determination of cadmium,—I, 362.
Beilstein, F., and Jawein, L. Determination of zinc electrolytically,—I, 362. Separation of manganese and iron,—II, 73.
Bell, L. Notes on the absorption spectrum of nitrogen peroxide,—VII, 32. Spectroscopic determination of lithium,—VII, 35. The optical properties of malic and tartaric acids,—VII, 120.
Bergman, F. See Fresenius, H.
Berry, N. A. Analysis of a copper slag of bright red color,—VIII, 429.
Bettel, W. Estimation of nitrogen,—IV, 404.
Bird, M. On a chlorite from Albemarle County, Va.,—VII, 181.
Bischof, G. Determination of minute quantities of lead,—I, 364.
Blomstrand, C. W. Oxygen acids of iodine,—IX, 143.
Bloxam, C. L. Detection of urea in aqueous solution,—V, 461.
Boillat, F. Disinfectants,—IV, 325.
Bosshard, E. Determination of ammonia in plant juices and extracts,—V, 457.
Bourgeois, L. Artificial production of witherite, strontianite and calcite,—IV, 316.
Boutury, E. See Brouardel, P.
Brame, C. Arsenic mirror,—IV, 36.
Brauner, B. Atomic weights of lanthanum and didymium,—IV, 76. Chemistry of the cerite minerals,—V, 300.
Index of Authors’ Names.

Brauner, K. On the occurrence of free fluorine,—III, 301.

Breneman, A. A. Colors for salt-glazed pottery,—I, 294.

Combustion of graphite in analyses of cast iron,—I, 294.

Action of caustic alkaline solutions on glass,—I, 297.

New colors for salt-glazed pottery,—II, 278.

Notes on water analysis,—II, 278.

Brouardel, P., and Boutury, E. A reagent for distinguishing ptomaines from vegetable alkaloids,—III, 382.

Broun, P. H. On ethoxy-metatoluic acid,—IV, 374.

See Remsen, I.

Brown, W. G. A new hydrous manganous aluminic sulphate from Sevier County, Tenn.,—VI, 97.

Cassiterite from Irish Creek, Rockbridge Co., Va.,—VI, 185.

Brown, G. M. See Michael, A.

Briihl, J. W. Purification of mercury,—I, 68.

Chemical constitution of organic bodies in relation to their density and their power to transmit light,—II, 352.

Relations between physical properties of organic bodies and their chemical constitution,—III, 450.

See Hoskinson, W. S. See Knerr, E. B.

Burney, W. See Remsen, I.

Burton, B. S. Notice of a phosphorus oxyiodide,—III, 280.

Propyl derivatives and decomposition products of ethyl aceto-acetate,—III, 385; IV, 27.

Burton, W. M. See Morse, H. N.

Butlerow, A. Inconstancy of the atomic weights,—V, 137.

Cailletet, L. Use of liquefied gas for producing low temperatures,—IV, 237.

Caldwell, G. C. Analysis of milk,—III, 291.

New forms of laboratory apparatus,—III, 296.

—and Parr, S. W. Marchand de Fecamp’s method for the determination of fat in milk,—VII, 238.

Cameron, C. A. Sewage in oysters,—III, 380.

Carnot, A. Use of hydrogen sulphide in the dry way in analyses,—I, 287.

Chromium phosphate and its utilisation in analysis and industry,—IV, 471.

Carter, O. C. S. Detection of adulterations in oil,—VII, 92.
Index of Authors’ Names.

Catlett, C., and Price, R. C. Analysis of a hand fire grenade,—X, 46.

Cavazzi, A. Determination of iodine in a mixture of iodides, bromides and chlorides,—VI, 353.

Chamberlain, J. C. See Austen, P. T.

Chappuis, J. Action of ozone on germs contained in the air,—III, 152.

— See Hautefeuille, P.

Chase, R. L. See Norton, L. M.

Chittenden, R. H. Reports on physiological chemistry,—II, 204, 268; III, 221, 360, 441; IV, 214, 461; V, 219; VI, 195.

Gastric digestion and the products formed,—IV, 214.

Distribution of arsenic in a human body,—V, 8.

and Cummins, G. W. Relative digestibility of fish flesh in gastric juice,—VI, 318.

Influence of bile, bile salts, and bile acids on amylolytic and proteolytic action,—VII, 36.

Alkalinity and diastatic action of human saliva,—IV, 329.

and Griswold, W. L. Diastatic action of saliva,—III, 305.

and Lambert, S. W. Arsenical bismuth subnitrate,—III, 396.

and Smith, H. E. Palmitic acid and the palmitins,—VI, 217.

— See Johnson, S. W. See Kühne, W.

Christensen, O. T. Higher chlorides of manganese.—IX, 459.

Compounds of manganese and fluorine,—IX, 460.

Atomic weight of fluorine,—IX, 461.

Ciamicijn, G. L. Spectroscopic investigations,—I, 301.

— and Dennstedt, M. Conversion of pyrrol into pyridine,—IV, 323.

Claassen, E. Solubility of the sulphides of copper and zinc in melting potassium sulphide, etc.,—VII, 144.

Extraction of vanadium from magnetite, etc.,—VII, 349; VIII, 437.

Solubility of manganese sulphide in melting potassium sulphide,—VIII, 436.

Catalpin: a bitter principle,—X, 328.

Claësson, P. New method of determining sulphur in organic bodies,—V, 120.

Clarke, F. W. Revision of atomic weights,—I, 295.

Specific gravity determinations,—II, 174; V, 249.

Meeting of the American Association for Advancement of Science, at Boston,—II, 274.

Meeting of the American Association for the Advancement of Science, at Cincinnati,—III, 291.

Some double and triple oxalates containing chromium,—III, 197.

Titration of tartaric, malic and citric acids with potassium permanganate,—III, 201.
Index of Authors' Names.

Clarke, F. W. Results of a recalculation of atomic weights,—III, 263.
Atomic weights of lanthanum and didymium,—IV, 76.
Chemical structure of the natural silicates,—X, 120.
— and Joslyn, O. T. Some phosphides of iridium and platinum,—V, 231.
— and Owens, Mary E. New variety of tetrahedrite,—II, 173.
New salts of uranium,—II, 331.
Some new compounds of platinum,—III, 350.
— and Perry, N. W. New mineral from Colorado,—IV, 140.
— and Stern, D. Some salts of chromium and mercury,—III, 351.
 — See Beamer, M. See Dudley, W. L.
Classen, A. Determination of magnesium,—II, 71.
 — and Bauer, O. Hydrogen dioxide in analytical chemistry,—V, 212.
 — and Reis, M. A. v. Electrolytic determinations and separations,—IV, 57.
Clermont, P. de. Decomposition of sulphides by ammonium salts,—I, 287.
Cléve, P. T. Erbia, holmia and thalia,—I, 453.
 Scandium,—I, 453.
 Atomic weight of yttrium,—IV, 483.
 Samarium and its compounds,—V, 471.
Coale, R. D. See Remsen, I.
Coblentz, A. See Schmitt, C.
Cocheteux, A. See Krutwig, J.
Colson, A. Determination of sulphur,—II, 69.
 — See Schützenberger, P.
Combes, A. Mauméne's pretended compound NH₃,—IV, 315.
 Syntheses in the fatty series by means of aluminium chloride,—X, 75.
 — and Smith, F. W. Silicotetrafluorides of certain bases,—X, 294.
 — See Michael, A.
Comstock, W. J. See Remsen, I.
Crafts, J. M. Chlorine, bromine and iodine at high temperatures,—II, 45.
 Relative densities of gases at high temperatures,—II, 98.
Index of Authors' Names.

Crafts, J. M. Use of mercury thermometers in the determination of melting and boiling points,—V, 307.
—— See Ador, E. See Friedel, C. See Meier, F.
Crampton, C. A., and Trescot, T. C. Estimation of carbonic acid in beer,—IX, 309.
Crismer, L. Use of neutral potassium chromate in preparing standard iodine solutions,—VI, 353.
Use of liquid paraffin for detecting water in alcohol, chloroform and ether,—VI, 355.
Crookes, W. Genesis of the elements,—IX, 232.
Cummins, G. W. See Chittenden, R. H.
Curtius, T. Discovery of hydrazine,—IX, 309.
Cutter, W. P. See Newbury, S. B.

D

Dabney, C. W., Jr. Iso-picraminic acid,—V, 20.
—— and Herff, B. v. Apparatus for the determination of nitrogen by the copper oxide method, and comparison of this and the Ruffle method,—VI, 234.
Davidson, F. P. Stilbite,—VI, 414.
Davey, E. W. New method of determining nitrites,—IV, 403.
Day, W. C. Recent researches on thiophene,—VIII, 51.
—— See Morse, H. N. See Remsen, I.
Degener, J. Estimation of grape sugar,—IV, 297.
Delafontaine, M. Philippia,—I, 453.
Decipia,—I, 454.
Dennstedt, M. See Cianician, G. L.
Dewey, F. P. Separation of tin from arsenic and antimony,—I, 244.
Dirvell, P. Separation of nickel and cobalt,—II, 72.
Donaldson, H. H. See Chittenden, R. H.
Donath, E. Detection of chromate in presence of bichromate of potas-
sium,—I, 364.
Determination of nickel and cobalt,—II, 72.
Determination of iodine in presence of chlorine and bromine,—II, 199.
Decomposition of compounds containing arsenic and antimony,—II, 201.
Separation of silver from lead,—III, 230.
Determinations by potassium permanganate in alkaline solution,—III, 231.
Separation of aluminium from iron,—III, 231.
Impurities in commercial sodium hydroxide,—IV, 59.
Index of Authors' Names.

Donath, J. Preparation of barium from barium amalgam,—I, 214.
Drown, T. M. Determination of silicon in pig iron and steel,—I, 147.
 Determination of sulphur in sulphides and in coal and coke,—II, 401.
 Condition of sulphur in coal and its relation to coking,—IV, 8.
 and Shimer, P. W. Analysis of iron ores containing both phosphoric and
titanic acids,—IV, 1.
Dubreuil. See de la Tour Dubreuil.
Dudley, W. L. Spigelina, a new volatile alkaloid,—I, 154.
 Modification of Böttger's test for sugar,—II, 47.
 New test for gallic acid,—II, 48.
 Modifications of methods of organic analysis by combustion,—X, 433.
 and Clarke, F. W. Graphite from Ducktown, Tenn,—II, 331.
Duggan, J. R. Estimation of urea by sodium hypobromite,—IV, 47.
 New gas generator,—V, 143.
 Relation of antiseptic power to chemical constitution,—VII, 62.
 Determination of diastatic action,—VII, 366.
 Determination of absolute neutrality,—VIII, 211.
Dumas, J. B. Gases retained by occlusion in aluminium and magnesium,
 —II, 151.
Dunnington, F. P. Microlite from Amelia County, Va,—III, 130.
 Columbite, orthite and monazite from Amelia County, Va,—IV, 138.
 Gas regulator,—IV, 155.
 Filtration balance,—IV, 476.
 New funnel support,—VIII, 76.
 Communications from the Chemical Laboratory of the University of
Virginia,—VIII, 426.
Dupré, A. Detection and estimation of fusel oil,—IV, 295.
Dyer, J. O., and Mixter, W. G. Halogen derivatives of oxanilide,—VIII,
 349.

E

Edwards, G. W. New salts of camphoric acid,—X, 234.
Elliott, A. H. Anthracene from water gas tar,—VI, 248.
Ely, J. S. See Chittenden, R. H.
 See Remsen, L.
Engler, C., and Haass, S. R. Determination of the flashing point of petro-
 leum,—IV, 293.
Evans, C. S. See Clarke, F. W.
Eyster, G. S. Scheme for qualitative determination of bases without
hydrogen sulphide,—VII, 21.
Index of Authors' Names.

F

Fahlberg, C. Liquid toluenesulphochloride,—I, 170.
a-Toluenedisulphonic acid and its derivatives,—II, 181.
— See Remsen, I.

Failyer, G. H., and Willard, J. T. Apparatus for continuous extraction of solids by a volatile solvent,—VIII, 73.

Fauconnier, A. Determination of urea by alkaline hypobromites,—II, 204.

Fenton, H. J. H. Action of sodium hypobromite on nitrogen compounds,—I, 286.

Feuerlein, G. See Herzfeld, A.

Field, A. W. See Jackson, C. L.

Fischer, E. Separation of arsenic,—III, 70.
— Transformation of xanthine into theobromine and caffeine,—IV, 72.
— Researches on caffeine,—V, 66.
— Test for hydrogen sulphide,—V, 456.
— Researches on uric acid,—VI, 360.
— and Tafel, J. Probable synthesis of one of the sugars,—IX, 234.
— See Penzoldt, F.

Fischer, O. Nicotinic acid from pyridine,—III, 456.
— Quinoline derivatives in medicine,—V, 72.

Fleissner, F. Determination of halogens in chlorates, bromates and iodates,—III, 69.

Fleitmann, T. Malleable nickel and cobalt,—I, 208.

Foote, H. C. Improvement in apparatus for precipitating copper by electrolysis,—VI, 333.

Foster, W. Action of alkaline hypobromites on nitrogen compounds,—I, 286.

Franke, B. New oxides of manganese,—IX, 458.
— Higher oxides of manganese and acids corresponding to them,—X, 240.

Frankland, E. River water,—II, 358.

Frear, W. The time element in gluten determinations,—VI, 402.

Freer, P. C., and Perkin, W. H., Jr. Action of ethylene bromide on sodium derivatives of the ethers of aceto-acetic acid, etc.,—X, 446.

Fresenius, H., and Bergmann, F. Electrolytic deposition of silver,—III, 229.
— Electrolytic deposition of nickel and cobalt,—III, 230.

Fresenius, R. Determination of the sulphur of pyrites,—II, 199.

Fresenius, W. The Fresenius-Babo method of detecting arsenic,—IV, 56.

Friedel, C., and Crafts, J. M. Decomposition of sulphonlic acids with hydrated sulphuric acid,—VI, 182.
— and Sarasin, E. Artificial production of crystallised quartz,—III, 302.

Furry, F. E. Iodic acid as an indicator,—VI, 341.
Index of Authors’ Names.

G

Gadsden, H. A. Method for the preparation of aluminium,—VI, 284.
Gaffield, T. Action of sunlight on glass,—II, 275.
Gawalowski, A. Preservation of ferrous sulphate,—V, 122.
Genth, F. A. Uranium minerals from North Carolina,—I, 87.
Genth, F. A., Jr. Spanish minerals,—I, 323.
Gerichten, E. v. Opium alkaloids,—II, 358.
— and Schrötter, H. Concerning morphine,—III, 454.
Gilbert, H. Determination of phosphoric acid volumetrically,—I, 290.
Gilchrist, P. C. See Thomas, S. G.
Ginti, MV. F. Separation of lithium from potassium and sodium,—IV, 59.
Gladding, T. S. Quantitative separation of rosin from fats,—III, 416.
Gooch, F. A. Separation and treatment of precipitates,—I, 317.
Grandeau, H. Sources of the ash ingredients of plants,—IV, 221.
Graves, C. E. See Plimpton, K. T.
Green, E. M. Value of Brücke’s method of testing for glucose in urine,—VIII, 139.
Greene, W. D. Source of error in estimating urea by the hypobromite method,—VIII, 124.
— See Marshall, J.
Griess, P. Detection of nitrous acid,—II, 69.
Grimaux, E. Transformation of morphine into codeine and homologous bases,—III, 383.
Index of Authors' Names.

Grimaux, E. New series of bases derived from morphine,—IV, 70.
Grisson, R. G. Action of chlorous acid upon heptylene,—X, 225.
New halogen compounds of lead,—X, 229.
Griswold, W. L. See Chittenden, R. H.
Grodski, M. Detection of acetal,—V, 124.
Gronnen, H. Determination of nitrogen,—V, 216.
Grossmann, J. Determination of sulphurous and hyposulphurous acids,—I, 288.
Gruner, L. Oxidability of cast iron, steel and wrought iron,—V, 144.
Gucci, P. Separation of copper and cadmium,—VII, 134.
Gundelach, C. See Michael, A.
Guyard, A. Quantitative separation of chlorine, bromine and iodine,—I, 287.
Detection of chlorates, bromates and iodates with oxalic acid,—I, 366.

H

Haass, R. See Engler, C.
Reagent for sodium, ammonium and lithium,—VII, 133.
Hains, R. Helvite from Amelia County, Va,—IV, 478.
Ammonia method of water analysis,—IV, 479.
Hake, H. W. See Dupré, A.
Halberstadt, W. Method of separating vanadic acid from the metals,—V, 123.
Hall, F. P. Action of vegetable acids on lead and tin,—IV, 440.
Hall, L. B. See Remsen, I.
Chloronitro-phenetol,—II, 258.
Hamlet, W. M. Action of compounds inimical to bacterial life,—III, 381.
Hampe, M. Adamantine boron,—V, 469.
Handl, A. See Pribram, R.
Hanriot, M. Alleged transformation of brucine into strychnine,—VI, 73.
Hardaway, H. Analysis of shot,—VIII, 432.
Harrison, G. Composition of mirror amalgam,—VIII, 430.
Hart, E. Stop-cock,—I, 209.
Nitrosulpho-benzoic acids and derivatives,—I, 340.
Piscidia : the active principle of Jamaica Dogwood (Piscidia erythrina),—V, 39.
New forms of laboratory apparatus,—VI, 178.
Detection of chlorine, bromine and iodine,—VI, 346.
Note in regard to the investigation of water gas tar,—VI, 431.
Index of Authors’ Names.

Hartley, W. N. Relation between the structure of carbon compounds and their absorption spectra,—III, 373.

Hartshorn, G. T. See Jackson, C. L.

Harvey, C. Volumetric estimation of chromic acid in chromates,—V, 216.

Hässelbarth, P. Value of nitrates and ammonia as plant food,—IV, 219.

Hastings, C. S. Lockyer’s “hypothesis that the so-called elements are compound bodies,”—I, 15.

Hayes, C. W. See Brackett, R. N. See Remsen, I.

Haynes, I. S. Absorption of ammonia in determinations with soda-lime,—X, II I.

Hedrick, W. A. p-Amido-o-sulphobenzoic acid,—IX, 410.

Hehner, O. Volumetric determination of glucose,—I, 367.

Hilger, A. Ethylidiacetic acid in the urine,—I, 365.

Hoffmann, A. W. Determination of carbon bisulphide,—III, 71.

Holton, F. A. New qualitative methods,—VII, 249.

Herff, B. v. See Dabney, C. W., Jr.

Hesse, O. See Jobst, J.

Hehner, O. Volumetric estimation of antimony in presence of tin,—IV, 468.

Hesse, O. See Jobst, J.

Hilger, A. Ethylidiacetic acid in the urine,—I, 365.

Hoffmann, A. W. Determination of carbon bisulphide,—III, 71.

Holton, F. A. New qualitative methods,—VII, 249.
Index of Authors' Names.

Relation between carbazol and pyrrol,—X, 440.
— See Japp, F. R.
Hoppe-Seyler, F. Physiological oxidation,—IV, 396.
Fermentation of cellulose,—V, 72.
Hornberger, R. Determination of the alkalies in the ashes of plants,—I, 361.
Hoskinson, W. S., and Brunner, D. B. Stilbite,—VI, 414.
— See Smith, E. F.
Howe, J. L. Nitrile of anhydro-benzdiamido-benzene,—V, 415.
Ethyl derivatives of anhydro-benzdiamido-benzene,—V, 418.
Action of nitric acid on mercuric sulphide,—VIII, 75.
Hübl. Examination of fats and oils,—VI, 285.
Hüner, G. Molecular weight of haemoglobin,—V, 148.
Foundations of chemistry,—X, 333.
Hurff, G. B. See Austen, P. T.
Hutchins, C. C. See Robinson, F. C.

I

Iles, M. W. Chloro-bromide of lead,—III, 52.
New manganese mineral,—III, 420.
Method of decomposing silicates,—IV, 57.
— See Remsen, I.

J

Jackson, C. L. Substituted benzyl compounds,—I, 93; II, 1, 85, 158, 250, 315, 383; III, 36, 252.
Action of phosphorus trichloride on aniline,—VI, 89.
Reduction of camphor to borneol,—VI, 404.
— and Field, A. W. Action of bromine on toluol,—II, 1.
Parachlorbenzyl compounds,—II, 85.
— and Hartshorn, G. T. Parabrombenzyl compounds,—V, 264.
Action of chromic superfluoride on benzoic acid,—VII, 343.
— and Lowery, W. Parabrombenzyl compounds,—III, 246.
— and Mabery, C. F. Paraiodbenzyl compounds,—II, 250.
— and Menke, A. E. Substances obtained from turmeric,—IV, 77, 360; VI, 77.
Turmeric oil—turmerol,—IV, 368.
Action of phosphorus trichloride on aniline,—IV, 380; VI, 89.
New method of preparing borneol from camphor,—V, 270.
Index of Authors' Names.

Jackson, C. L., and Rolfe, G. W. Quantitative determination of hydroxyl, —IX, 82.

— and White, J. F. Parachlorbenzyl compounds,—II, 158.

Orthobrombenzyl compounds,—II, 315.

Synthesis of anthracene and phenanthrene from orthobrombenzylbromide,—II, 383.

Substituted benzaldehydes,—III, 30.

— and Wing, J. F. Conversion of aromatic sulphonates into amido compounds,—IX, 75.

Benzyldimethylamine,—IX, 78.

Benzenetrisulphonic acid,—IX, 325.

Action of nitric acid on symmetrical trichlorbenzene,—IX, 348.

Tribromtrinitrobenzol,—X, 283.

See Comey, A. M.

Jacobsen, O. Removal of arsine from hydrogen sulphide,—IX, 386.

— See Owens, Mary E.

Jay. Determination of urea by alkaline hypobromites,—II, 204.

Jenkins, E. H. See Johnson, S. W.

Jessel, H. See Orndorff, W. R.

Jewett, J. Influence of acetic acid on the separation of iron as basic acetate from manganese, zinc, cobalt and nickel,—I, 251.

Jobst, J., and Hesse, O. Coto-bark and its constituents,—I, 454.

Johnson, S. W. Determination of nitrogen by combustion with calcium hydroxide,—VI, 60.

— and Chittenden, R. H. Distribution of arsenic in the human body,—II, 332.

— and Jenkins, E. H. Determination of nitrogen in agricultural products,—I, 77; II, 27.

Determination of phosphoric acid,—I, 84.

Joly, A. Adamantine boron,—V, 470.

Jorissen, A. Detection of iodine in bromine,—III, 68.

Test for nitrous acid,—IV, 403.

Separation of nickel and cobalt,—IV, 471.

Joslin, O. T. See Clarke, F. W.

Julius, P. Action of bromine and iodine upon silver bromide, chloride and iodide,—VI, 352.

Jungfleisch, É. Artificial production of optically active substances,—VI, 128.

— and Lefranc. Preparation and properties of pure levulose,—IV, 69.

K

Kebler, E. A. See Clarke, F. W.

Keiser, E. H. Recent researches on the pyridine and quinoline bases,—V, 60; VII, 200.
Estimation of sulphur in organic compounds,—V, 207.
Apparatus for measuring gases and making gas analyses,—VIII, 9.
Lecture experiment to show composition by volume of nitrous and nitric oxides,—VIII, 92.
Action of chlorine upon pyridine,—VIII, 308.
Pyrometer,—IX, 296.
Atomic weight of oxygen,—X, 249.
See Morse, H. N. See Remsen, I.
Kinnicutt, L. P. Determination of chlorine and bromine by electrolysis,—IV, 22.
Decomposition of phenyltribrompropionic acid by water,—IV, 25.
Modification of Noack's method of preparing carbonic oxide,—V, 43.
and Nef, J. U. Volumetric determination of combined nitrous acid,
—V, 388.
and Sweetser, R. C. Schultze's process of determining halogens in aromatic compounds,—VI, 415.
Knerr, E. B., and Brunner, D. B. Menaccanite,—VI, 413.
and Schoenfeld, J. Glauconite, apophylite and heulandite,—VI, 412.
See Smith, E. F.
Knorre, G. v. See Ilinski, M.
Knublach, O. Estimation of sulphur in illuminating gas,—IV, 401.
Improvement in method of estimating ammonia,—IV, 402.
Koch, R. Disinfectants,—IV, 325.
Koenig, A. Estimation of phosphoric acid,—III, 371.
Koenigs, W. Transformation of piperidine into pyridine,—I, 454.
Koettstorfer, J. Detection of foreign fats in butter,—I, 366.
Kolbe, H. Criticism of Baeyer's address,—I, 72.
König, G. A. Jarosite from a new locality,—II, 375.
Beegerite, a new mineral,—II, 379.
Köninck, L. L. de. Preparation of hydrochloric acid,—III, 68.
Reagent for the detection of potassium,—IV, 59.
Kopp, A. See Michael, A.
Koppeschaar, W. F. Composition and examination of the commercial sulphate of quinine,—VII, 138.
Kossel, A. Chemistry of the cell nucleus and its relation to urea,—V, 222.
Krauch, C. See Koenig, J.
Kraut, K. Bleaching powder and analogous substances,—V, 467.
Index of Authors' Names.

Kroupa, G. Test for gaseous ammonia,—IV, 402.
Krutwig, J. Estimation of silver in lead ores,—IV, 470.
Separation of iodine and chlorine,—VI, 352.
— and Cocheteux, A. Determination of iron by potassium permanganate in presence of hydrochloric acid,—V, 459.
Kuhara, M. Method for estimating bismuth volumetrically,—I, 326.
Phthalimide,—III, 26.
Orthotolylphthalimide,—IX, 51.
See Remsen, I.
Kurbatow, A. See Beilstein, F.

L

La Coste, W. Arsinobenzoic acid,—II, 438.
Ladd, E. F. Composition and digestibility of feeding stuffs,—VIII, 47.
Pepsin vs. animal digestion,—VIII, 433.
Sugars and starch in fodders and their determination,—X, 49.
Ladenburg, A. Artificial alkaloids,—II, 77, 151.
Dismemberment of tropine,—IV, 322.
— and Rügheimer, L. Synthesis of tropic acid,—II, 436.
Lambert, S. W. See Chittenden, R. H.
Landmann, B. See Michaelis, A.
Larsen, G. Separation of zinc from copper,—III, 229; V, 122.
Latham, W. Chemical apparatus,—IX, 142.
Le Bon, G. New antiseptics; the glyceroborates of calcium and of sodium,—IV, 317.
Bleaching of sugar syrup by ozone,—I, 291.
Reduction of carbonic acid by phosphorus at ordinary temperatures,—I, 291.
Oxidation of carbonic oxide by air over phosphorus at ordinary temperatures,—I, 292.
Solubility of ozone in water,—I, 292.
Action of ozone on carbon monoxide,—I, 373.
Index of Authors' Names.

Legler, L. Determination of methyl aldehyde,—V, 460.
Leibermann, L. Detection of sulphurous acid in wines and other liquids,—IV, 401.
Lewis, D. S. See Storer, F. H.
Lieben, A. Vapor density of chlorine,—I, 303.
Lindemann, O. Volumetric determination of vanadic acid,—I, 364.
Link, A. See Michaels, A.
Linn, A. F. See Morse, H. N.
Lloyd, Rachael. See Mabery, C. F.
Lockyer, J. N. Elements as compound bodies,—I, 10.
Löw, O. Free fluorine,—III, 300.
Lowery, W. See Jackson, C. L.
Luedeking, C. Post-mortem detection of chloroform,—VIII, 358.
Lunge, G. Conduct of nitrogen tetroxide towards sulphuric acid,—IV, 75.
Treatment of iron pyrites in analysis,—IV, 402.
— and Naef, P. Bleaching powder and analogous substances,—V, 468.
Lyttkens, E. Presence and detection of arsenic in prints, carpets, etc.,—IV, 55.

M

Mabery, C. F. Decomposition of chlortribrompropionic acid by alkaline hydrates,—V, 255.
Products of the dry distillation of wood at low temperatures,—V, 256.
β-Bromtetrachlorpropionic acid,—VI, 155.
Substituted acrylic and propionic acids,—IX, 1.
Composition of products from Cowles electrical furnace,—IX, 11.
Dibromiodacrylic and chlorbromiodacrylic acids,—IV, 92.
a- and β-Chlordibromacrylic acids,—VI, 157.
— and Nicholson, H. H. β-Dibrom dichlorpropionic acid and β-brom dichloracrylic acid,—VI, 165.
— and Palmer, G. H. Orthiodotoluolsulphonic acid,—VI, 170.
Substituted acrylic and propionic acids,—V, 251.
— and Weber, H. C. Chlortribrompropionic acid,—IV, 104.
— See Hill, H. B. See Jackson, C. L.
Index of Authors' Names.

Mackintosh, J. B. Electrolytic determination of copper and the formation and composition of so-called allotropic copper,—III, 354.
Volumetric determination of manganese,—V, 290.
Determination of phosphorus in iron and steel,—VII, 296.
Improved form of Elliott's gas apparatus,—IX, 294.

Mager, W. See Lehmann, G. W.

Derivatives of p-oxy-m-toluic acid,—IV, 186.
Benzoyl derivatives of the xylenesulphamides,—IV, 192.

Reports on industrial chemistry,—I, 58, 184, 273, 356, 440; II, 62, 143, 259, 417; III, 58, 139.
Uranine,—I, 69.
Review of "Chemical Composition and Physical Properties of Steel Rails" (C. B. Dudley),—I, 205.
Review of "Foreign Phosphates" (C. U. Shepard, Jr.),—I, 207.
Chlorstannic acid,—I, 304.
Unusual case of electrolysis,—I, 438.
Review of "Grundriss der chemischen Technologie" (J. Post),—II, 212.
Review of "Chimie Appliquee aux Arts Industriels" (J. Girardin),—II, 214.
Review of Lunge's "Sulphuric Acid and Alkali,"—II, 342.
Simple form of apparatus for determining specific heats,—II, 361.
Revision of the atomic weight of aluminium,—III, 1, 77.
Molecular weight of hydrofluoric acid,—III, 189.
Precipitation of ammonium phospho-molybdate in presence of organic salts,—III, 232.
Explosive ice,—VII, 428.
Influence of light on the explosion of nitrogen iodide,—X, 332.

Mann, C. Determination of zinc,—I, 362.
Manning, I. H. New salts of camphoric acid,—X, 233.
Decomposition of potassium cyanide,—X, 235.

Maquenne, L. Inosite,—IX, 74.

Marignac, M. C. Ytterbium,—I, 452.

Marquardt, L. Detection and estimation of fusel oil,—IV, 296.

Marsh, C. W. Ammonia process for water analysis,—IV, 188.

Review of "Analysis of the Urine" (Hofmann and Uitzman),—IX, 139.
— and Green, W. D. Action of cacodylic acid on the animal economy,—VIII, 128.

— and Potts, C. S. Arsenic in glass and in the caustic alkalies,—X, 425.

Mathesius, W. Note on Winkler's absorption apparatus for elementary analysis,—VI, 354.
Index of Authors’ Names.

Maxwell-Lyte, F. Estimation of chlorine, bromine and iodine in the presence of one another,—VI, 352.

Mayer, A. Assimilability of ammonia by the leaves of plants,—IV, 218.

Mayer, L. Determination of arsenious acid in presence of arsenic acid,—III, 69.

McCarter, H. G. See Sadler, S. P.

McCay, L. W. Determination of arsenic,—VII, 373.

The Reich method of determining arsenic,—VIII, 77.

Determination of arsenic as the pentasulphide,—IX, 174.

Action of sulphuretted hydrogen on arsenic acid,—X, 459.

McKelvey, J. W. Silicious earth,—VI, 247.

McLoughlin, C. S. See Colby, C. E.

Meier, F., and Crafts, J. M. Vapor density of iodine,—II, 168; III, 72.

Crystalline form of tribromacrylic acid,—IV, 277.

Memminger, C. G. Platinum silicide,—VII, 172.

Allanite from Nelson County, Va.,—VII, 177.

Mendelejeff, D. New elements and their position in the natural system,—III, 454.

Menke, A. E. Action of ferric sulphate on iron,—IX, 90.

—— See Jackson, C. L. See Scovell, M. A.

Menschutkin, N. Phenol-phthalein,—V, 218.

Merz, V., and Tibiriça, J. Synthesis of formic acid,—II, 76.

Meyer, C. See Meyer, V.

Meyer, L. Purification of mercury,—I, 213.

Atomic weight of beryllium or glucinum,—II, 360.

Evaporation without fusion,—III, 153.

Foundations of thermo-chemistry,—V, 147.

—— and Seubert, K. The unit used in calculating the atomic weights,—VII, 96.

Atomic weight of silver and Prout’s hypothesis,—VII, 104.

Meyer, V. Specific gravity of chlorine at high temperatures,—I, 372.

Chlorine, bromine and iodine at high temperatures,—II, 78.

Concerning iodine,—II, 175.

Benzenes of different origin,—IV, 481.

Estimation of vapor densities,—V, 71.

New substance in benzene from coal tar: thiophene,—V, 300.

Thiophene and pyrrol groups,—VI, 75.

Vapor density of ferrous chloride,—VI, 210.

Thiophene and derivatives,—VIII, 51.
Index of Authors' Names.

Meyer, V., and Meyer, C. Vapor density of some inorganic bodies,—I, 213.
Conduct of chlorine at high temperatures,—I, 302.
—— and Stadler, O. Source of error in the determination of nitrogen,—VII, 131.

Michael, A. Synthesis of helicin and phenol-glucoside,—I, 305.
Stilbene and derivatives,—I, 312.
Mono-ethyl-phthalate,—I, 413.
New formation of ethyl mustard oil,—I, 416.
Preparation of methyl aldehyde,—I, 418.
"Migration of atoms" and Reimer's reaction,—I, 420.
Action of aromatic oxy-acids on phenols,—V, 81.
Synthetical researches in the glucoside group,—V, 171; VII, 336.
Action of sodium ethyl oxide on bromethylidene bromide,—V, 192.
New synthesis of allantoïn and suggestions on the constitution of uric acid,—V, 198.
Convenient method for preparing bromacetic acid,—V, 202.
Several cases of intermolecular rearrangement,—V, 203.
New synthesis of cinnamic acid,—V, 205.
Action of aldehydes on phenols,—V, 338.
Quantitative lecture apparatus,—V, 353.
Action of acetyl chloride and acetic anhydride on corn and wheat starch,—V, 359.
Constitution of resocyanin,—V, 434.
Decomposition of cinchonine by sodium ethylate,—VII, 182.
Addition of sodium acetacetic ether to unsaturated organic ethers,—IX, 112.
New reactions with sodium acetacetic and sodium malonic ethers,—IX, 124.
Researcches on alloisomerism,—IX, 180.
Relation between constitution of polybasic unsaturated organic acids and the formation of their anilides,—IX, 183.
Action of phosphorus pentachloride on the ethers of organic acids and on derivatives of acetic acid,—IX, 205.
Action of phosphorus pentachloride on acetonilide,—IX, 217.
Preliminary notes,—IX, 219.
Constitution of levulinic and maleic acids,—IX, 364.
Constitution of sodium acetacetic and malonic ethers,—X, 158.
—— and Browne, G. M. Researches on alloisomerism,—IX, 274.
Action of ethyl aldehyde on orcin and resorcin,—V, 349.
—— and Gundelach, C. Synthesis of methylconine and constitution of conine,—II, 171.
—— and Kopp, A. Formation of crotonic and β-oxybutyric aldehydes from ethyl aldehyde,—V, 182.
—— and Norton, L. M. Action of iodine monochloride on aromatic amines,—I, 255.
a- and β-Monobromcrotonic acids,—II, 11.
Index of Authors' Names.

Conversion of organic isocyanates into mustard oils,—VI, 257.
Properties of the phenylsulphonacetic ethers,—VII, 65.
Simultaneous oxidation and reduction by hydrocyanic acid,—VII, 189.
Resacetophenone,—VII, 275.
Relation between constitution of polybasic unsaturated organic acids and the formation of their anilides,—IX, 197.
— and Ryder, J. P. Action of aldehydes on phenols,—IX, 130.
— and Wing, J. F. Action of methyl iodide on asparagine,—VI, 419.
Michaelis. A. Quadrivalence of tellurium towards chlorine,—IX, 385.
— and Becker, P. Valence of boron,—II, 77; III, 152.
— and La Coste, W. Valence of phosphorus,—VII, 354.
— and Landmann, B. Constitution of selenious acid,—IX, 461.
— and Link, A. Constitution of phosphonium and arsenium compounds,—III, 299.
Michaelow, W. Determination of chlorine in urine,—VI, 351.
Miles, F. P. Examination of a supposed metallic meteorite from Highland County, Va.,—VIII, 427.
Formation of platinum silicide,—VIII, 428.
Miller, O. Detection of free sulphuric acid in the presence of aluminium sulphate,—V, 456.
Miwerth, H. Method for the preparation of aluminium,—VI, 284.
Mixter, W. G. Compounds of aromatic amines with silver nitrate and sulphate,—I, 239.
Density of the vapors of some ammonium and ammonia compounds,—II, 153.
Estimation of sulphur in illuminating gas,—II, 244.
Synthesis of water for lecture experiment,—II, 246.
Sauer's method of determining sulphur,—II, 396.
Urea from ammonia and carbon dioxide,—IV, 35.
Some reductions with zinc and ammonia,—V, 1, 282.
Reduction of benzoyl-ortho-nitranilide,—VI, 26.
New acid propionates and butyrates,—VIII, 343.
— and Wilcox, C. P. Nitro derivatives of dibromoxanilide,—IX, 361.
— See Dyer, J. O. See Matthiessen, C. H. See Osborne, T. B.
Mohr, C. Volumetric determination of phosphoric acid,—II, 200.
Mohr, F. Material for standard weights and measures,—I, 67.
Moissan, H. Preparation of metallic chromium,—I, 70.
Amalgams of chromium, manganese and iron, etc.,—I, 71.
Isolation of fluorine,—VIII, 445.
Index of Authors' Names.

Mollenda, A. Volumetric determination of phosphoric acid,—V, 121.
Moore, G. D. See Anschütz, R.
Moore, R. W. The Hübl method of examining fats and oils,—VI, 416.
Morley, E. W. Ratio of oxygen to nitrogen in the air,—II, 276.
Method for accurate and rapid analyses of air,—III, 275.
Determination of atomic weight of oxygen,—X, 21.
Morris, J. Preparation of aluminium,—V, 303.
Reports on analytical chemistry,—I, 284, 361; II, 67, 199; III, 66, 229, 366; IV, 55.
Determination of barium as chromate,—II, 176.
Method of determining the value of zinc dust,—VII, 52.
Apparatus for correct reading of gas volumes over water,—VII, 58.
Apparatus for the purification of mercury by distillation in a vacuum,—VII, 62.
—— and Bayley, W. S. Haydenite,—VI, 24.
—— and Burton, W. M. Determination of butter in milk,—IX, 222.
Supposed dissociation of zinc oxide, etc.,—X, 148.
Separation and determination of boric acid,—X, 154.
Atomic weight of zinc,—X, 311.
Removal of iodate from iodide of potassium,—X, 321.
Analysis of butter, oleomargarine, etc.,—X, 322.
—— and Day, W. C. Determination of chromium in chrome iron ore,—III, 163.
—— and Keiser, E. H. Apparatus for determining equivalents of certain elements,—VI, 347.
—— and Linn, A. F. Determination of nitric acid,—VIII, 274.
—— and Piggot, C. Determination of butter in milk,—IX, 108.
—— See Remsen, I.
Moses, W. E. See Noyes, W. A.
Muir, Pattison. Detection of tin in presence of antimony,—IV, 474.
—— and Robbs, C. E. Volumetric estimation of bismuth,—IV, 469.
Munroe, C. E. Modification of Berthier's process for the valuation of coal,—II, 277.
Action of vegetable acids on tin,—II, 278.
Muntz, A., and Aubin, E. Method for collecting and preserving carbonic acid of the air for future estimation,—IV, 57.
Carbonic acid in the higher regions of the atmosphere,—IV, 71.

N

Naef, P. See Lunge, G.
Nägeli, W. Elementary composition of starch,—IV, 319.
Nasini, R. Atomic refraction of sulphur,—V, 70.
Nef, J. U. See Kinnicutt, L. P.
Index of Authors' Names.

Newbury, S. B. Preparation and reactions of croton aldehyde,—V, 112.
 Action of light on silver chloride,—VI, 407.
 So-called silver subchloride,—VIII, 196.
 Apparatus for fractional distillation in a vacuum,—X, 362.
Nichols, W. R. Deterioration of library bindings,—I, 293.
Nicholson, H. H. See Mabery, C. P.
Nilson, L. F. Separation of arsenic from antimony,—I, 290.
 Ytterbia and scandia,—I, 453.
 Atomic weight of glucinum,—II, 435.
 Atomic weight of thorium,—IV, 405.
 See Krüss, G.
Nolte, R. Estimation of chlorine in cereals,—II, 68.
 and Chase, R. L. The ethyl orthotoluidines,—VII, 118.
 and Holder, J. G. Oxidation of benzol,—VII, 114.
 and Noyes, A. A. Action of heat on ethylene,—VIII, 362.
 Note on the butines,—X, 430.
 and Richardson, H. A. Fatty acids of the drying oils,—X, 57.
 and Williams, H. J. Action of bromine on isobutylene,—IX, 87.
 See Michael, A.
Norton, T. H. New nitroprussides,—X, 222.
 and Otten, A. H. Apparatus for fractional distillation,—X, 62.
 Amine salts of paralouene sulphonic acid,—X, 140.
 and Schmidt, T. W. New metallic salts of benzene sulphonic acid,—
 X, 136.
 and Twitchell, E. Alloys of calcium and zinc,—X, 70.
 and Westenhoff, J. H. Amine salts of benzene sulphonlic acid,—X, 129.
 Action of silicon tetrafluoride on acetone,—X, 209.
 Action of ammonium sulphocyanide on monobromacetone,—X, 213.
 Limits of bromination of acetone at 0°,—X, 213.
 See Carson, A. I. See Kebler, J. T. See Laist, A. See Tscherniac, J.
Noye, F. G. Higher homologues of cocaine,—X, 145.
Noyes, A. A. See Norton, L. M.
Noyes, W. A. Note on the test for tin,—V, 72.
 Oxidation of benzene derivatives with potassium ferricyanide,—V, 97;
 VII, 145; VIII, 176; X, 472.
 Paranitrobenzoic sulphide,—VIII, 167.
 and Moses, W. E. Oxidation of meta-nitrotoluene,—VII, 149.
 and Walker, C. Oxidation of meta-bromtoluene,—VIII, 185.
 Oxidation of benzene derivatives with potassium ferricyanide,—IX, 93.
 See Remsen, I.
Index of Authors' Names.

O

Oeszewski, K. See Wroblewski, S.
Oglobine, W. Commercial petroleum,—III, 302.
O'Neill, E. C. See Stillman, J. M.
Orlowsky, A. Detection of cadmium in the presence of copper,—IV, 470.
Substitution of ammonium hyposulphite for hydrogen sulphide in qualitative analysis,—V, 215.
Orndorff, W. R. Decomposition of diazo compounds in formic and acetic acids,—X, 368.
— and Jessel, H. Decomposition of acetone with bleaching powder,—X, 363.
— See Remsen, I.
Osborne, T. B. Separation of zinc and nickel,—VI, 149.
Separation of zinc in ores, etc.,—VI, 151.
Otten, A. H. See Norton, T. H.
Otto, R. Preparation of pure hydrogen sulphide,—I, 68.
Owens, Mary E., and Japp, F. R. Condensation compounds of benzil with ethyl alcohol,—VII, 16.
— See Clarke, F. W.

P

Palmer, A. G. See Remsen, I.
Palmer, A. H. See Hill, H. B.
Palmer, A. W. See Hill, H. B.
Palmer, C. Sulphocinnamic acids,—IV, 161.
— See Remsen, I.
Palmer, C. S. See Remsen, I.
Palmer, G. H. See Mabery, C. F.
Palmer, G. M. See Kinnicutt, L. P. See Michael, A.
Parr, S. W. Estimation of albuminoids in cow's milk,—VII, 246.
— See Caldwell, G. C.
Parsons, C. L. Analysis of some southern fruits with reference to their food values,—X, 487.
Aconitic acid in the scale from sorghum sugar pans,—IV, 39.
Pasteur, L. Artificial preparation of optically active substances,—VI, 120.
Patterson, L. G. Analysis of a fibrous bisilicate from Nelson County, Va.,—VII, 180.
Pattinson, J. Determination of manganese,—I, 364.
Pavee, A. Determination of phosphoric acid volumetrically,—I, 290.
Index of Authors' Names.

Pavy, F. W. Volumetric determination of glucose,—I, 367.

Péan and Baldy. Employment of hydrogen peroxide in surgery,—IV, 324.

Pechmann, H. v. See Stokes, H. N.

Peirce, Gertrude K. See Smith, E. F.

Pelgot. Glucose,—I, 452.

Penny, C. L. Apparatus for filling a burette,—IX, 141.

A new kind of isomerism,—IV, 60.

Luminous incomplete combustion of ether,—IV, 317.

Magnetic rotary polarisation of compounds in relation to their chemical constitution,—VI, 356.

Benzoyl acetic acid and its derivatives,—VII, 152, 251, 357; VIII, 101.

—— See Freer, P. C.

Perry, N. W. See Clarke, F. W.

Pettersson, O. See Nilson, L. F.

Pfeiffer, T., and Tollens, B. Elementary composition of starch,—IV, 320.

Pflüger, E. Determination of urea,—II, 204.

Metabolism,—IV, 465.

Pfordten, O. von der. Determination of molybdic and phosphoric acids,—IV, 404.

Volumetric determination of molybdic acid,—IV, 476.

Estimation of tungstic acid,—V, 123.

Volumetric determination of phosphoric acid,—VII, 132.

Phillips, W. B. Manufacture of acid phosphates,—VII, 135.

Piccard, J. Relation of cantharidin derivatives to the ortho series,—I, 214.

Piggot, C. See Morse, H. N.

Plimpton, R. T., and Graves, E. E. Estimation of halogens in volatile organic compounds,—V, 211.

Poleck, T. Determination of sulphur in illuminating gas,—V, 120.

Pomeroy, C. T. Estimation of chlorine, sulphuric acid and chromium in the presence of organic matter,—V, 41.

Constant water-bath,—V, 140.

Potts, C. S. See Marshall, J.

Prescott, A. B. Estimation of alkaloids by potassium mercuric iodide,—II, 294.

Biological importance of achievements in organic chemistry,—III, 293.

Prescott, C. O. See Norton, L. M.

Preusse, C. See Tiemann, F.

Pribram, R., and Handl, A. Specific viscosity of liquids and its relation to their chemical constitution,—III, 453.

Price, R. C. Analysis of tscheffkinite,—X, 38.

—— See Catlett, C.

Proskauer, B. Estimation of sulphurous acid in the air,—IV, 491.
Index of Authors' Names.

R

Regnard, P. See Bert, P.
Reichert, E. Method for analysis of butter,—I, 366.
Reinitzer, B. Conduct of the acetates of iron, chromium and aluminium,—IV, 472.
Reis, M. See Classen, A.
Reiset, M. J. Carbonic acid in the air,—IV, 299.
Remsen, I., and Morse, H. N. Oxidation of brom-paraethyltoluene,—I, 138.
— and Noyes, W. A. Protection of a group containing two carbon atoms in oxidation,—IV, 197.
— and Orndorff, W. R. Decomposition of diazo compounds with alcohol,—IX, 387.
— and Palmer, C. Oxidation of metatoluene sulphamide,—IV, 142.
Rian, J. Determination of phosphide of hydrogen,—I, 289.
Richards, Ellen H. Determination of carbon monoxide,—VII, 143.
Richards, T. W. Relation of the atomic weights of copper and silver,—X, 182.
Atomic weight of copper,—X, 187.
— See Cooke, J. P.
Richardson, C. Separation and determination of potash and soda in plant ashes, etc.,—III, 422.
Composition of American grasses,—IV, 16.
Determination of so-called reverted phosphoric acid,—IV, 183.
Chemical composition of corn and wheat as influenced by environment,—VI, 302.
Chemical composition of the products of roller milling of wheat,—VI, 388.
An examination of whiskies,—VII, 425.
Graduation of Laurent’s polariscope,—VIII, 72.
Chemical composition and physical properties of American oats,—VIII, 364.
American barley,—IX, 16.
Richardson, H. A. See Norton, L. M.
Richmond, W. T. Temperature regulator,—V, 287.
Richter, M. Volumetric determination of potassium bichromate,—IV, 472.
Alkalinity of potassium chromate,—IV, 472.
Robbs, C. E. See Muir, P.
Robinson, F. C. Estimation of urea,—VII, 142.
— and Hutchins, C. C. Extraction of caesium and rubidium compounds from Hebron lepidolite,—VI, 74.
Production of titanium by the action of sodium at low temperatures,—VI, 74.
— See Mabery, C. F.
Rockwood, E. W. See Atwater, W. O.
Roessler, C. Determination of manganese,—I, 363.
Rolfe, G. W. See Jackson, C. L.
Rollet, A. Estimation of sulphur in iron, steel, etc.,—II, 69.
Roscoe, H. E. Lecture on artificial indigo,—III, 282.
 Artificial indigo,—IV, 67.
 The earth metals in samarskite,—IV, 327.
Röse, B. New ethers of carbonic acid,—II, 435.
Rosenstiehl, A. Bayer’s method of synthesis of indigo,—II, 439.
Rowland, W. L. See Sadler, S. P.
Rüdorff, F. Determination of aqueous vapor in the air,—III, 67.
Rügheimer, L. See Ladenburg, A.
Ryder, J. P. See Michael, A.

S

Sachsse, R. Elementary composition of starch,—IV, 320.
 — See Headen, W. P.
 — and Rowland, W. L. New coloring matter,—III, 22.
Salkowski, E. Oxidation in the blood,—V, 145.
 Formation of urea,—V, 220.
Salomon, F. Elementary composition of starch,—IV, 320.
 Starch and its transformations,—VI, 67.
Sarasin, E. See Friedel, E.
Scheibe, A. See Wildt, E.
Scheibler, C. Separation of sugar from molasses and syrups,—V, 141.
Scherer, S. See Medicus, L.
Schering, E. Lead in potassium iodide,—I, 71.
Schiff, H. Analysis of halogen organic compounds,—I, 286.
 — and Sestini, R. First work on pure chemistry in America,—VII, 356.
Schlagdenhauffer. Sensitive reagent for magnesium,—I, 362.
Schlickum, O. Alkalimetric determination of phosphoric acid,—II, 70.
Schloesing, T. Carbonic acid in the air,—IV, 301.
Schmidt, H. Titration of acid tungstates,—VIII, 16.
Schmidt, T. W. See Norton, T. H.
Schmitt, C., and Coblenzl, A. Gallisin,—VI, 214.
Schneider, E. A. Action of sulphuric acid on hydrazine tolueu sulphonlic
 acids,—VIII, 271.
 Separation of the two toluidine sulphonlic acids,—VIII, 274.
 Compound of manganese sesquioxide with cupric oxide,—IX, 269.
 Treatment of silicates with hydrochloric acid to ascertain their structure,—X, 405.
Schneider, G. H. Reversal of the direction of rotation caused by ordinary
 malic acid,—II, 150.
Schöne, E. Quantitative estimation of hydrogen dioxide,—I, 286.
 Ozone in the air,—II, 279; III, 67.
 Detection of hydrogen dioxide in the air,—III, 68.
Index of Authors' Names.

— See Knerr, E. B.

Schorlemmer, C., and Thorpe, T. E. Heptane from Pinus sabiniana,—VI, 28.

Schreiner, L. Two remarkable cases of metamerism,—II, 359.

Schroeder, M. Volumetric determination of zinc,—IV, 470.

Formation of urea,—V, 219.

Schöttler, H. See Gerichten, E. v.

Schulze, K. E. Determination of halogens in side chains of aromatic hydrocarbons,—VI, 351.

Schumann, O. See Latschenberger, J.

Schützengen, P. Inconstancy of the atomic weights,—V, 137.

—and Colson, A. Silicon,—IV, 314.

Sedgwick, W. T. Strychnine test,—I, 369.

Relations of eupatorium and strychnine,—I, 370.

Seelheim, F. Specific gravity of chlorine at high temperatures,—I, 372.

Selden, C. C. See Anschütz, R.

Sell, W. J. Determination of chromium,—I, 364.

Sestini, R. See Schiff, H.

Setterberg, C. Caesium and rubidium,—III, 456.

Seubert, K. Atomic weight of platinum,—III, 155.

—and Meyer, L.

Shimer, P. W. See Drown, T. M.

Short, F. G. Analysis of milk,—IX, 100.
— See Armsby, H. P.

Sidersky, D. Separation of calcium and strontium,—V, 121.

Skraup, Z. H. Synthesis of quinoline,—IV, 63.

Smith, E. F. New base,—I, 150.

Analysis of calculus found in a deer,—I, 210.

New results in electrolysis,—I, 329.

Electrolytic method applied to cadmium,—II, 41.

Synthesis of salicylic acid,—II, 338.

Determination of boracic acid,—IV, 279.

Minerals from Lehigh County, Pa.,—V, 272.

Mineralogical notes,—VI, 411.

Electrolytic method as applied to iron,—X, 330.

—and Hoskinson, W. S. Electrolysis of molybdenum solutions,—VII, 90.

—and Knerr, E. B. Substitution products from salicylic acid,—VIII, 95.
Index of Authors’ Names.

— See Brunner, D. B. See Schoenfeld, J. See Thomas, N. W.
Smith, E. G. Action of bromine on anhydro-propionylphenylenediamine, —VI, 172.
Smith, F. S. Ozocerite,—VI, 247.
Smith, F. W. See Comey, A. M.
Smith, H. E. See Chittenden, R. H.
Smith, J. C. Device for filtration of carbon in cast iron and steel analyses, —I, 368.
Smith, J. L. Methods of analysing samarskite and other columbates,— V, 44, 73.
Separation of thoria from other oxides,—V, 79.
Quantitative estimation of didymium oxide,—V, 80.
Smith, L. Mosandra,—I, 454.
Sonnenschein, F. L. Transformation of brucine into strychnine,—VI, 73.
Soret, J. L. Philippiia,—I, 453.
Soxhlet, F. Conduct of sugars towards alkaline copper and mercury solutions,—II, 203.
Spring, W. Formation of alloys by pressure,—IV, 75.
Union of bodies by pressure,—VI, 129, 212; X, 243.
Springer, A. Glycocholic ether,—I, 181.
Pentachloramyl formate,—III, 293.
Reduction of nitrates by ferments,—IV, 452.
Stadler, O. See Meyer, V.
Staedel, W. Relations between boiling points and specific volumes,—V, 70.
Stallo, Helena. See Clarke, F. W.
Stern, D. See Clarke, F. W.
Stevens, E. K. See Hill, H. B.
Stillman, J. M. Gum-lac from Arizona,—II, 34.
Ethereal oil of California bay tree,—II, 38.
Stillwell, C. M. Opium analysis,—VIII, 295; X, 164.
Stodward, J. T. Determination of the flashing point of petroleum,—IV, 285; VI, 18.
Stokes, H. N. Phthalic sulphinide,—VI, 262.
Storer, F. H. Oxidation of cork stoppers and rubber joints,—V, 68.
"Barking" and preserving nets and sails,—V, 440.
— and Lewis, D. S. Gases occluded by coke,—IV, 409.
Index of Authors’ Names.

Sutton, F. S. Post-mortem imbibition of arsenic,—VII, 75.
Sweetser, R. C. See Kinnicutt, L. P.
Sylvester, J. J. Application of the atomic theory to the graphical representation of the invariants and covariants of binary quantics,—I, 52.

T

Tafel, J. See Fischer, E.
Tatlock, R. R. Estimation of nitrogen in guano with soda lime,—I, 289.
Tauber, E. Determination of phosphoric acid,—V, 216.
Tenney, F. Estimation of lead as dioxide by means of the electric current,—V, 413.
Terrell, A. Determination of superoxides volumetrically,—III, 367.
Than, C. v. Estimation of illuminating gas in the air,—V, 123.
Thomas, N. W. Manganese borate,—IV, 358.
— and Smith, E. F. Electrolysis of bismuth solutions,—V, 114.
Thomas, S. G., and Gilchrist, P. C. Manufacture of steel and ingot iron from phosphoric pig iron,—IV, 228.
Thomsen, J. Thermochemical investigations on the theory of carbon compounds,—II, 347.
Concerning the formula of benzene,—II, 437.
Thomson, R. T. Comparison of litmus, methyl-orange, phenacetolin, and phenol-phthalein as indicators,—V, 217.
Thorpe, T. E. Heptane from Pinus sabiniana,—I, 155.
— See Schorlemmer, C.
Tibirica, J. See Merz, V.
Tidy, C. M. Estimation of organic matter in water,—I, 285.
River water,—II, 358.
Estimation of organic matter in water,—II, 68.
Tollens, B. See Grupe, A. See Pfeiffer, T.
Tommasi, D. Nascent hydrogen,—IV, 482.
Torrey, J. Detection of mercuric compounds,—VII, 356.
Method of determining equivalents,—X, 73.
Tour Dubreuil, de la. Extraction of sulphur from its ores,—VI, 65.
Traube, M. Active condition of oxygen,—IV, 73, 397.
New reaction for the detection of hydrogen dioxide,—V, 355.
Treadwell, F. P. Determination of chromium,—IV, 472.
Trescott, T. C. See Crampton, C. A.
Trimble, H. See Abbott, Helen C. DeS.
Troost, L. Compounds of ammonia with hydrochloric acid,—I, 212.
Permeability of silver for oxygen gas,—VI, 283.
Index of Authors' Names.

Tschirikow, A. Absorption of hydrogen by palladium sponge,—IV, 400.
Twitchell, E. See Norton, T. H.

V

Van Mater, J. A. See Schoonmaker, W. D.
Van Nüys, T. C. Apparatus for estimating carbonic acid in the air,—VIII, 190, 315.
Van Mater, J. A. See Schoonmaker, W. D.
Venable, F. P. Hydrated carbon disulphide,—V, 15.
Venables, T. C. New chemical industry,—I, 72.
Vogel, H. W. Photographing the spectra of oxygen and hydrogen,—I, 71.
Vogel, H. W. New hydrogen lines and dissociation of calcium,—II, 77.
Vortmann, G. Determination of manganese,—II, 73.
Waddell, J. Atomic weight of tungsten,—VIII, 280.
Wagner, P. Valuation of commercial phosphates,—VIII, 63.
Van Mater, J. A. See Schoonmaker, W. D.
Wakeman, A. J., and Wells, H. L. Basic lead nitrates,—IX, 299.
Walther, J. O. See Mixter, W. G.
Walther, J. See Graebe, C.
Warder, R. B. Alkalimetry with phenolphthalein as an indicator,—III, 55, 232.
Warder, R. B. Relation between temperature and the rate of chemical action,—III, 203.
Warder, R. B. Evidence of atomic motion within liquid molecules,—III, 294.
Warder, R. B. Speed of saponification of ethyl acetate,—III, 340.
Warder, R. B. Alleged ozone as a preservative,—III, 384.
Warder, R. B. Eyster's scheme for qualitative analysis,—VII, 110.
Warder, R. B. Coefficients of volatility of aqueous chlorhydric acid,—X, 458.
Index of Authors’ Names.

Warington, R. Crum-Frankland method of determining nitric acid,—I, 289.
 Determination of nitric acid in soils by Schloesing’s method,—IV, 318.
Watts, H. Chemical nomenclature,—IV, 311.
Weber, H. C. See Mabery, C. F.
 Stannous nitrates,—IV, 325.
Webster, J. Preparation of aluminium,—V, 302.
Weigert, L. Determination of acetic acid in wine,—I, 365.
 Detection of salicylic acid in wine, etc.,—II, 202.
Weil, F. Coppering of castings of iron and steel,—IV, 157.
Weigert, H. C. See Mabery, C. F.
 Stannous nitrates,—IV, 325.
Webster, J. Preparation of aluminium,—V, 302.
Weigert, L. Determination of acetic acid in wine,—I, 365.
 Detection of salicylic acid in wine, etc.,—II, 202.
Weil, F. Coppering of castings of iron and steel,—IV, 157.
Wein, E. Extraction of soluble phosphoric acid in superphosphates,—II, 70.
 Value of nitrates and ammonia as plant food,—IV, 220.
Weld, H. W. Analysis of Lockport sandstone,—X, 224.
Weldon, W. Recent improvements in industrial chemistry,—IV, 302, 383.
 Present condition of the soda industry,—V, 52.
 Method for the preparation of aluminium,—VI, 284.
Weller, A. Estimation of antimony,—IV, 469.
 Detection and estimation of titanium,—V, 122.
Wells, H. L. Basic zinc and cadmium nitrates,—IX, 304.
 See Wakeman, A. J.
Westenhoff, J. H. See Norton, T. H.
Weyl, T., and Anrep, B. v. Poisoning by carbon monoxide,—III, 70.
 and Zeitler, X. Absorption of oxygen by alkaline solution of pyrogallol,—III, 366.
 Oxygen and organic matter in waters,—III, 367.
Wheeler, C. G. Transmission of gases through fluids of different densities,—IV, 235.
White, J. F. Asbestos stopper for combustion tubes,—III, 151.
 See Jackson, C. L.
Whitfield, J. E. Estimation of chlorine, bromine and iodine by electrolysis,—VIII, 421.
Wieland, J. Comparative study of the various indicators for free acids and alkalies,—V, 458.
Wilber, F. A. Gas receiver for use in gas analysis,—IX, 418.
 See Austen, P. T.
Willey, H. W. Absorption spectrum of uranine,—I, 211.
 Delicacy of test for cobalt,—I, 211.
 Percentage of sugar in sap of sugar maple,—I, 293.
 Detection of hydrochloric acid,—II, 48.
 Rotary power of glucose and grape sugar,—II, 274.
 Influence of heating with dilute acids on the rotary power of glucose,—II, 277.
Index of Authors’ Names.

 Estimation of acetic acid by distillation,—VII, 417.
 Kumys,—VIII, 200.
 Dr. Springer’s discovery of denitrifying ferments,—VIII, 446.
 See Failyer, G. H.
Willcox, C. P. See Mixter, W. G.
Williams, G. H. Review of “Synthèse des Minéraux et des Roches”
 (Fouqué et Lévy),—V, 127.
 Relations of crystallography to chemistry,—V, 461.
Williams, H. J. See Norton, L. M.
Williams, M. W. Determination of nitrates,—III, 367.
 Estimation of organic carbon and nitrogen,—III, 368.
Wilm, T. Conduct of palladium, rhodium and platinum towards illuminating gas,—III, 154.
Wilson, H. B. New gas regulator,—III, 378.
Wing, J. F. See Jackson, C. L. See Michael, A.
Winkler, C. Improved hydrogen sulphide generator,—IV, 401.
 Absorbing apparatus for water for elementary analysis,—VI, 353.
 Germanium,—IX, 71.
 Germanium compounds,—X, 245.
Wirtz, Q. See Anschütz, R.
Wislicenus, J. Arrangement of atoms in space in organic molecules,—IX, 453.
Woll, F. W. A. Methods of butter analysis,—IX, 60.
Woods, C. D. See Atwater, W. O.
Wroblewski, S., and Oeszewski, K. Liquefaction of oxygen and nitrogen,
 —V, 146.
Wroblewsky, E. Oxidation of symmetrical nitro-xylene,—IV, 322.
Wyrouboff, G. Artificial production of optically active substances,—VI, 123.

Y

Young, A. V. E. Apparatus for gas analysis,—I, 105.
 Thermochemical analysis of reaction between alum and potassium hydrate,—VIII, 23.
Yver, A. Separation of zinc from cadmium,—III, 229.

Z

Zaboudsky, G. Combined carbon in iron and steel,—VI, 286.
Zeitler, X. Determination of combined carbon in steel and cast iron,—VI, 287. See Weyl, T.
Index of Authors' Names.

Ziegler. Estimation of sulphuric acid,—IV, 402.
Zimmermann, C. Use of permanganate of potassium in presence of hydrochloric acid,—III, 231.
Atomic weight of uranium,—IV, 240.
Investigations on uranium,—IV, 474; V, 124.
Zorn, W. Preparation and basicity of hyponitrous acid,—IV, 322.
Züblin, H. Concerning the halogens,—III, 379.
INDEX OF SUBJECTS.

A

Absorption apparatus for use in estimating ammonia,—I, 450.
Acenaphthene, action of chlorine on,—X, 217.
Acetal, detection of,—V, 124.
Acetanilide, action of phosphorus pentachloride on,—IX, 217.
Acetates of chromium, iron and aluminium, conduct of,—IV, 472.
Acetic acid, behavior towards secondary and tertiary aromatic bases,—IX, 195.
— decomposition by zinc chloride,—II, 26.
— determination,—I, 365.
— estimation by distillation in liquids containing organic matter,—VII, 417.
— influence on separation of iron from manganese, zinc, cobalt, and nickel, —I, 251.
— manufacture,—I, 279.
Acetic aldehyde,—V, 258.
Acetic anhydride, action on corn and wheat starch,—V, 359.
— action on salicyl-phenol,—V, 86.
Acetic ether, action of phosphorus pentachloride on,—IX, 213.
Acetobenzoic anhydride, action of hydrochloric acid and chlorine on,—II, 96.
Acetochlorhydros, action on dipotassium salicylate,—V, 173.
Acetone,—V, 261.
— action of silicon tetrafluoride on,—X, 209.
— decomposition by zinc chloride,—II, 26.
— decomposition with bleaching powder,—X, 363.
— limits of bromination at o°,—X, 213.
Acetone-dicarboxylic ethyl ester, action of ammonia on,—VIII, 375.
Acetyl chloride, action of phosphorus pentachloride on,—IX, 215.
— action on corn and wheat starch,—V, 359.
Acid, new fat, in nut of California Bay tree,—IV, 206.
Acid phosphates, manufacture,—VII, 135.
Index of Subjects.

Acid tungstates, titration,—VIII, 16.
Acids and alkalies, influence on diastatic action,—VII, 309.
 complex inorganic,—I, 1, 217; II, 217, 281; III, 317, 402; IV, 377; V, 361, 391; VII, 210, 313, 392; VIII, 289.
 influence on the diastatic action of saliva,—III, 305.
 polybasic unsaturated, relation between constitution and the formation of their anilides,—IX, 183, 197.
 saturated polybasic, behavior towards aniline,—IX, 203.
 unsaturated, isomerism of,—IX, 221.
Vegetable, action on lead and tin,—IV, 440.
Aconitic acid, behavior towards aniline,—IX, 192.
 in scale from sorghum sugar pans,—IV, 39.
Acrylic acids, substituted,—III, 172.
Acrylic and propionic acids, constitution of the substituted,—IV, 273.
 substituted,—V, 251; IX, i.
Agricultural science, reports on,—II, 339, 426; III, 145; IV, 146, 218.
Air analysis,—III, 275.
Albuminoids, determination in hay and fodders,—II, 81.
 in cow's milk,—VII, 246.
 influence of food on the relative proportion in cow's milk,—VII, 247.
Albumose in urine in osteomalacia,—VI, 110.
 new forms of,—VI, 31, 101.
Alcohol, solidification,—V, 146.
Alcohols, etc., decomposition by zinc chloride at high temperatures,—II, 20.
Aldehyde, decomposition by zinc chloride,—II, 25.
Aldehydes, action on phenols,—V, 338; IX, 139.
 new reaction for,—V, 216.
 and ammonia, action on benzil,—VII, 1.
Alizarine, detection,—II, 203.
Alkalies, caustic, sensitive reagent for,—IV, 59.
 volumetric determination with bichromates,—IV, 472.
Alkalies, influence on diastatic action,—VII, 309.
 influence on the diastatic action of saliva,—III, 305.
 manufacture,—I, 286.
Alkalimetry, comparison of indicators used in,—V, 458.
 with phenol phthalein as an indicator,—III, 55, 232.
Alkaloid, new volatile,—I, 154.
Alkaloids, artificial,—II, 77, 151.
 estimation by potassium mercuric iodide,—II, 294.
 vegetable, preparation,—I, 447.
Alkyl bromides, methods for determining relative stability of,—VIII, 251.
 iodides, action on amido acids,—VII, 195.
Allanite, decomposition product of,—VII, 178.
 from Nelson Co., Va., analysis,—VII, 177.
Allantoin, new synthesis of,—V, 198.
Alloisomerism,—IX, 180, 274.
Allopecurus pratensis, analyses of,—IV, 20.
Allophone, from Lehigh Co., Pa.,—V, 272.
Alloys, formation by pressure,—IV, 75.
—— of calcium and zinc,—X, 79.
Allylacetophenone, action of bromine on,—VII, 171.
Allyl alcohol,—V, 262.
Allylbenzyloxyacetic acid,—VII, 168.
Alum and potassium hydrate, thermochemical analysis of reaction between,
—— manufacture,—I, 361.
Aluminium and titanium, separation,—VII, 283.
—— atomic weight,—III, 1, 77.
—— bronze,—I, 198.
—— camphorate,—X, 234.
—— chloride, syntheses in the fatty series by means of,—X, 75.
—— electrolytic separation from iron,—IV, 59.
—— occlusion of gases in,—II, 151.
—— preparation,—V, 302; VI, 284.
—— separation from iron,—III, 231.
—— sulphate, manufacture,—I, 360.
Alumino-molybdates,—VII, 410.
Amalgam, mirror, composition of,—VIII, 430.
Amalgams of chromium, iron, manganese, cobalt, and nickel,—I, 70.
American Association for Advancement of Science, sub-section of chemistry, at Saratoga,—I, 291.
—— at Boston,—II, 274.
—— at Cincinnati,—III, 291.
Amido acids, action of alkyl iodides on,—VII, 195.
Amido-meta-toluic acid,—III, 428.
\(\beta\)-Amidoparatoluic acid,—X, 479.
\(p\)-Amidophenetol,—I, 271.
\(\gamma\)-Amidopyridine,—VIII, 389.
Amidopyridine, esters,—VIII, 395.
Amidotoluic acid, transformation into chlor- and brom-metatoluic acid,—III, 430.
—— transformation into oxytoluic acid,—III, 428.
Amines, aromatic, compounds with silver nitrate and sulphate,—I, 239.
Ammonia, absorption apparatus for,—I, 450.
—— absorption in nitrogen determinations with soda-lime,—X, 111.
—— determination in plant juices and extracts,—V, 457.
—— estimation,—IV, 402.
—— improved apparatus for estimating,—IV, 402.
—— new compounds with hydrochloric acid,—I, 212.
—— test for,—IV, 402.
Ammonia process for water analysis,—IV, 188.
Ammonium and ammonia compounds, vapor density of,—II, 153.
Index of Subjects.

Ammonium chloride, manufacture,—I, 359.
 — chloride solutions, nitrification in,—II, 45.
 — ferrous sulphate as a reagent for nitric acid,—V, 209.
 — fluoride, purification,—V, 389.
 — hyposulphite, substitution for hydrogen sulphide in qualitative analysis,
 —V, 215.
 — new reagent for,—VII, 133.
 — phospho-molybdate, precipitation in presence of salts of organic
 acids,—III, 232.
 — sulphocyanide, action on monobromacetone,—X, 213.
 — uranate,—X, 219.
Amyl alcohol, use,—I, 446.
Amylolytic and proteolytic action, influence of bile, bile salts and bile acids
on,—VII, 36.
Analysis, qualitative, Eyster’s scheme for,—VII, 110.
 — qualitative without hydrogen sulphide,—V, 215; VII, 21, 110.
“Analysis of the Urine” (K. B. Hofmann and R. Ultzmann), review,—IX,
 139.
Analytical chemistry, reports,—I, 284, 361; II, 67, 199; III, 66, 229, 366;
 IV, 55, 293, 490, 463; V, 120, 211, 456; VI, 351; VII, 129.
Andrews, T., memorial to,—II, 79.
Anhydrobenzidimiodobenzene, ethyl derivatives,—V, 418.
 — nitrile of,—V, 415.
Anhydroorthosulphamine Lenzaic acid,—I, 430.
Anhydro-propionyl phenylenediamine, action of bromine on,—VI, 172.
Anhydrosulphaminephthalic acid,—VI, 268.
Anilides of fumaric and maleic acids, and phenylaspartic acid,—IX, 235.
Aniline, action of fluoride of silicon on,—X, 166.
 — action of isobutyric acid on,—VII, 116.
 — action of phosphorus trichloride on,—IV, 380; VI, 89.
 — new salts of,—I, 151.
Aniline-benzene-sulphonate,—X, 134.
Aniline-paratoluene-sulphonate,—X, 143.
Anilmucoxybromic acid,—IX, 156.
Anilmucoxychloric acid,—IX, 167.
“Animal Chemistry” (C. T. Kingzett), review,—I, 203.
Animal tar, future of,—I, 374.
Anthracene and phenanthrene, constitution,—II, 388.
 — and phenanthrene, synthesis,—II, 383.
 — from water-gas tar,—VI, 248.
Antimonio-molybdates,—VII, 395.
Antimonio-tungstates,—VII, 393.
Antimonoso-molybdates,—VII, 328.
Antimonoso-phospho-tungstates,—VII, 392.
Antimonoso-tungstates,—VII, 325.
Antimony, electrolytic determination,—IV, 58.
— tin and arsenic, separation,—VII, 133.
— volumetric estimation, in the presence of tin,—IV, 468.
Antimony tartrates,—V, 241.
— constitution,—II, 319.
Antiseptic power, relation to chemical constitution,—VII, 62.
Antiseptics, new: the glyceroborates of calcium and sodium,—IV, 317.
— properties of,—V, 138.
Apophyllite from French Creek, Chester Co., Pa.,—VI, 412.
— from Fritz Island, Pa.,—IV, 357.
Apotumeric acid,—VI, 86.
Apparatus for absorption in elementary analysis,—VI, 353, 354.
— for determination of nitrogen by the copper oxide method,—VI, 234.
— for filling a burette,—IX, 141.
— for measuring and analysing gases,—VIII, 9.
— for purification of mercury by distillation in a vacuum,—VII, 60.
— new forms of laboratory,—VI, 178.
— quantitative lecture,—V, 353.
— some pieces of chemical,—IX, 142.
— used in precipitating copper by electrolysis,—VI, 333.
— which facilitates the correct reading of gas volumes over water,—VII, 58.

"Application of New Atomic Theory" (J. J. Sylvester), review,—I, 52.
Arbutin, constitution of,—V, 179.
Aromatic amines, action of iodine monochloride upon,—I, 255.
— compounds with silver nitrate and sulphate,—I, 239.
Aromatic oxyacids, action on phenols,—V, 81.
Arsenic, absorption from bismuth subnitrate,—III, 399.
— and antimony, Clarke's method of separation from tin,—I, 244.
— detection and determination in organic matter,—II, 235.
— determination,—VII, 373.
— determination as pentasulphide,—IX, 174.
— distribution in human body in arsenical poisoning,—II, 332 ; V, 8.
— in glass and in the caustic alkalies,—X, 425.
— in ores, mattes, and metallic copper, estimation,—VII, 112.
— post-mortem imbibition,—VII, 75.
— presence and detection in prints, carpets, etc.,—IV, 55.
— quantitative efficiency of the Marsh-Berzelius method for detecting,—
— VII, 338.
— separation,—III, 70.
— the Fresenius-Babo method of detecting,—I, 56.
— the Reich method of determining,—VIII, 77.
— tin and antimony separation,—VII, 133.
Arsenic acid, action of sulphuretted hydrogen on,—X, 459.
— use,—I, 444.
Arsenical bismuth subnitrate,—III, 396.
Index of Subjects.

Arsenical glass, action of reagents upon,—X, 425.
Arsenic compounds, decomposition,—II, 201.
— nitride, attempt to form,—X, 42.
Arsenio-molybdates,—III, 406.
Arsenio-tungstates,—II, 289.
Arsenious acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 218.
Arsenio-molybdates,—VII, 406.
Arsenio-tungstates,—II, 289.
Arsenious acid, determination in presence of arsenic acid,—III, 69.
Arsenic compounds, constitution of,—III, 299.
Arsenio-molybdates,—VII, 317.
Arsenio-phospho-tungstates,—VII, 334.
Arsenious compounds, decomposition,—II, 201.
Arsenious acid, attempt to form,—X, 42.
Arsenio-molybdates,—VII, 218.
Arsenio-vanadates,—VII, 226.
Arsenio-compounds,—III, 406.
Arsenio-tungstates,—VII, 218.
Arsenio-vanadates,—VII, 226.
Arsenious acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 218.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Arsenous acid, determination in presence of arsenic acid,—III, 69.
Arsenio-vanadates,—VII, 226.
Arsenio-tungstates,—II, 289.
Benzene, action of sulphurous anhydride on,—IX, 67.
— from coal tar, thiophene in,—V, 300.
— structural formula,—II, 437; III, 154.
Benzene-derivatives, oxidation with potassium ferricyanide,—V, 97; VII, 145; VIII, 176; IX, 93; X, 472.
Benzenes of different origin,—IV, 481.
Benzene-sulphonic acid, amine salts of,—X, 129.
— new metallic salts of,—X, 136.
Benzene-trisulphonic acid,—IX, 325.
Benzyl, action of aldehydes and ammonia on,—VII, 1.
— condensation compounds with ethyl alcohol,—VII, 16.
Benzile, action of alcoholic hydrocyanic acid on,—VII, 190.
Benzoic acid, action of chromic superfluoride on,—VII, 343.
— manufacture,—I, 446.
Benzoic aldehyde, action of hydrocyanic acid on,—VII, 193.
— behavior towards phenol,—IX, 130.
Benzoic sulphinide,—VIII, 223.
— ethers,—IX, 406.
— formation,—I, 428.
Benzoic, action of alcoholic hydrocyanic acid on,—VII, 193.
Benzol, oxidation,—VII, 114.
Benzoltrisulphamide,—IX, 338.
Benzoltrisulphanilide,—IX, 346.
Benzoltrisulphochloride,—IX, 335.
Benzoltrisulphonic acid,—IX, 325.
Benzoltrisulphonic ester,—IX, 337.
Benzquinone, action of hydrocyanic acid on,—VII, 192.
Benzoylacetacetic acid,—VII, 159.
Benzoylacetic ether, preparation,—VII, 156.
α-Benzyolamidosalicylic acid,—V, 24.
Benzoylbenzoltrisulphamide,—IX, 343.
Benzoylmethyltoluenesulphamide,—VIII, 242.
Benzoylmethyltoluenesulphamide,—VIII, 242.
Benzoyl-ortho-nitranilide, reduction of,—VI, 26.
Benzoyl-ortho-phenylenediamine,—VI, 27.
Benzoylparamidodinitrophenol,—V, 27.
Benzoylphenyltoluenesulphamide,—VIII, 242.
Benzoyltoluenesulphamide and derivatives,—VIII, 352.
Benzyl aldehydes,—III, 30.
Benzyl bromides, chemical activity of substituted,—III, 252.
— substituted,—I, 95.
Benzyl compounds, substituted,—I, 93; II, 1, 85, 158, 250, 315, 383; III, 30, 246, 252; V, 264.
Benzylidimethylamine,—IX, 78.
Index of Subjects.

Beryl from Amelia Co., Va., analysis,—VII, 175.
Beryllium (or glucinum), atomic weight,—II, 369, 435; VI, 215.
Beth-a-barra, coloring matter from,—III, 22.
Bichromate of potassium, manufacture,—I, 358.
Bile acids, action on proteid matter, etc.,—VI, 201.
— bile salts and bile acids, influence on amylolytic and proteolytic action,—VII, 36.
— coloring matter, formation,—VI, 198.
Bisilicate from Nelson Co., Va., analysis,—VII, 180.
Bismuth, electrolytic determination,—IV, 58.
— metallurgy,—I, 186.
— solutions, electrolysis of,—V, 114.
— subnitrate, arsenical,—III, 396.
— volumetric estimation,—I, 326.
— volumetric estimation as oxalate,—IV, 469.
Bleaching powder and analogous substances, constitution,—V, 467.
Blood, oxidation in,—V, 145.
Boiling points and specific volumes, relations between,—V, 70.
— determination,—V, 356.
Boneset and strychnine, relations,—I, 370.
Boracic acid determination,—IV, 279.
Borax, production and use,—I, 359.
Boric acid determination,—IV, 279.
— separation and determination,—IX, 12; X, 154.
Borneol, preparation from camphor,—V, 270.
— reduction of camphor to,—VI, 404.
Boron,—V, 469.
— valence,—II, 77; III, 152.
Böttger, R. Obituary note,—III, 457.
Bread, manufacture,—II, 143.
Brick, manufacture,—II, 417.
British Association, papers read before the Chemical Section,—I, 298.
Brodie, B. C. Obituary note,—II, 439.
Bromacetone, action of ammonium sulphocyanide on,—X, 213.
a-Bromacrylic ether, action of sodium malonic ether on,—IX, 119.
Bromcinnamic acids, contributions to our knowledge of Glaser's two,—IX, 379.
a and β-Bromcinnamic acids' ethers of,—IX, 379.
Bromcitraconic acid, behavior towards aniline,—IX, 191.
a-Bromcrotonic acid,—II, 15.
β-Bromcrotonic acid,—II, 12.
Bromcymenesulphonic acid,—V, 159.
β-Bromdichloracrylic acid,—VI, 167.
Bromdichloracrylic acid,—IX, 6.
Index of Subjects.

Bromethylbenzoylecgonine,—X, 147.
Bromethylidenebromide, action of sodium ethyl oxide on,—V, 192.
Bromfumaric acid, behavior towards aniline,—IX, 187.
Bromine, action on anhydropropionyl phenylenediamine,—VI, 172.
 — action on silver bromide, chloride, and iodide,—VI, 352.
 — and chlorine, separation,—VII, 129.
 — and iodine, separation,—VII, 249.
 — at high temperatures,—II, 78.
 — chlorine and iodine, estimation by electrolysis of silver salts,—VIII, 421.
 — determination by electrolysis,—IV, 22.
 — determination of chlorine in presence of,—IV, 400.
 — estimation in the presence of both chlorine and iodine,—VI, 352.
 — iodine, and chlorine, detection,—VI, 346.
 — manufacture,—I, 441.
Brommaleic acid, behavior towards aniline,—IX, 185.
Brommetatoluic acid,—III, 431.
Bromparathyltoluene, oxidation,—I, 138.
β-Bromtetrachlorpropionic acid,—VI, 155.
Bromtoluenes, oxidation with potassium ferricyanide,—V, 102.
Bromtrichlorpropionic acid,—IX, 1.
Brucine, alleged transformation into strychnine,—VI, 73.
Brucite from Berks Co., Pa.,—V, 281.
Building materials,—II, 417.
Burette, apparatus for filling,—IX, 141.
Butines, notes on,—X, 430.
Butter and cheese, manufacture,—II, 145.
 — oleomargarine, etc., method of analysis,—X, 322.
 — testing of,—II, 203.
Buttery analysis, methods,—I, 366; IX, 60.
Butyl alcohol, decomposition by zinc chloride,—II, 24.
Butyrates and propionates, acid,—VIII, 343.

C

Cacodylic acid, action on the animal economy,—VIII, 128.
Cadmium and copper, separation,—II, 42; III, 229; VII, 134.
 — detection in the presence of copper,—IV, 470.
 — electrolytic determination,—I, 362; IV, 58.
 — electrolytic separation and estimation,—II, 41.
 — iodide,—V, 235.
 — nitrate, basic,—IX, 304.
 — nitroprusside,—X, 222.
Index of Subjects.

Cadmium-benzene-sulphonate,—X, 136.
Caesium and rubidium compounds, extraction from Hebron lepidolite,—VI, 74.
 — and rubidium, metallic,—III, 456.
Caffeine, researches on,—V, 66.
Calcite, artificial production,—IV, 316.
Calcium acid phosphate,—I, 360.
 — and zinc, alloys,—X, 70.
 — chloride,—I, 360.
 — chloride, use in extracting sulphur from its ores,—VI, 65.
 — dissociation,—II, 77.
 — hydroxide, determination of nitrogen by combustion with,—VI, 62.
 — separation from strontium,—V, 121.
Calculus found in a deer, analysis,—I, 210.
Calico printing,—II, 266.
Camphor, method of preparing borneol from,—V, 270.
 — reduction to borneol,—VI, 404.
Camphoric acid, new salts of,—X, 233.
Candles, manufacture,—III, 60.
Cane sugar, specific heat of,—II, 374.
Cantharidine derivatives, relations to the ortho series,—I, 214.
Carbazol and pyrrol, relations between,—X, 440.
Carbon, combined, determination in steel and cast iron,—VI, 287.
 — combined, in iron and steel,—VI, 286.
 — estimation of minute quantities,—V, 458.
 — in phosphorus, estimation of,—VI, 153.
 — in phosphorus, historical note on,—VI, 72.
 — in waters, estimation,—I, 285.
 — rapid filtration in steel analysis,—I, 368.
Carbon bisulphide, determination,—III, 70.
 — hydrated,—V, 15.
 — solidification,—V, 146.
 — uses,—I, 442.
Carbon dioxide, use of liquid,—IV, 407.
Carbonic acid,—V, 69.
 — collection and preservation for future estimation,—IV, 57.
 — estimation in beer,—IX, 290.
 — ethers of,—II, 435.
 — proportions in the higher regions of the atmosphere,—IV, 71.
Carbonic acid in air,—IV, 298.
 — absorption tubes for estimating,—VIII, 315.
 — apparatus for estimating,—VIII, 190.
 — estimations,—IX, 64.
Carbonic oxide, detection,—II, 70.
 — modification of Noack's method of preparation,—V, 43.
Carbon monoxide, action of ozone on,—I, 373.
Index of Subjects.

Carbon monoxide, conduct towards moist phosphorus and air,—IV, 454; V, 424.
— determination,—VII, 143.
— poisoning by,—III, 70.
Carboxytraronic acid and the structural formula of benzene,—III, 154.
Cassiterite from Irish Creek, Va.,—VI, 185.
Cast iron, steel and wrought iron, relative oxidability of,—V, 144.
Castor oil, density and refractive index,—X, 399.
Catalpin: a bitter principle,—X, 328.
Caucasian petroleum, nature of,—II, 360.
Cell nucleus and its relation to urea,—V, 222.
Cellulose, fermentation of,—V, 72.
Cements,—II, 420.
— hydraulic,—II, 480.
Cerite metals, chemistry of,—V, 300.
Chemical action in a magnetic field,—III, 157; VI, 430.
— relation to temperature,—III, 203.
"Chemical Composition of Steel Rails" (C. B. Dudley), review,—I, 205.
Chemical constitution, rotary polarisation of compounds in reference to,—VI, 356.
— relation of antiseptic power to,—VII, 62.
Chemical journals, provisional list of abbreviations of titles,—X, 77.
Chemical nomenclature,—IV, 311.
"Chemical Physiology and Pathology" (V. C. Vaughan), review,—I, 57.
"Chemische Technologie" (J. Post), review,—II, 212.
Chemistry, first work in pure chemistry in America,—VII, 356.
— foundations of,—X, 333.
"Chemistry: General, Medical, and Pharmaceutical" (J. Attfield), review,—I, 299; VI, 133.
"Chemistry of the Hydrocarbons and their Derivatives" (H. E. Roscoe and C. Schorlemmer), review,—IV, 152.
"Chimie élémentaire appliquée aux Arts Industriels" (J. Girardin).—II, 214.
Chloral hydrate, action on orcinol,—IX, 134.
— action on resorcin,—V, 350.
— manufacture,—I, 446.
Chlorate of potassium, manufacture,—I, 357.
Chlorates, bromates and iodates, decomposition with oxalic acid,—I, 366.
Chlorbromacrylic acid,—III, 127.
— salts of,—III, 128.
Chlorbromodiacrylic and dibromodiacrylic acids,—IV, 92.
α-Chlordibromacrylic acid,—VI, 157.
β-Chlordibromacrylic acid,—VI, 161.
Chlorfumaric acid, behavior towards aniline,—IX, 188.
Chlorhydric acid, coefficients of volatility of aqueous,—X, 458.
Chloride of lime, manufacture,—II, 260.
Chlorine and bromine, separation,—VII, 129.
— and iodine, separation,—VI, 352.
— at high temperatures,—I, 302; II, 78.
— cyanogen and sulphocyanogen, estimation in the same solution,—
 III, 369.
— detection and determination,—I, 286.
— detection and determination in presence of bromine and iodine,—II,
 199.
— determination by electrolysis,—IV, 22.
— estimation in the presence of organic matter,—V, 41.
— in grains, determination,—II, 68.
— in urine, determination,—VI, 351.
— question, latest developments,—I, 372.
— vapor density,—I, 303.
— vapor density at high temperatures,—I, 372.
Chlorine, bromine and iodine at high temperatures,—II, 78.
— detection,—VI, 346.
— detection and determination,—IV, 400.
— estimation in the presence of one another,—VI, 352.
— indirect estimation by electrolysis of silver salts,—VIII, 421.
— quantitative separation,—I, 287.
Chloriodosalicylic acid, salts of,—VIII, 96.
Chlorite from Albemarle Co., Va., analysis,—VII, 181.
Chlorometatoluic acid,—III, 430.
Chlorobromide of lead,—III, 52.
Chloroform, manufacture,—I, 446.
— post-mortem detection,—VIII, 358.
Chlornitrophenol,—II, 258.
Chloropal from Lehigh Co., Pa.,—V, 277.
Chlorostannic acid,—I, 304.
Chlortoluic acid,—III, 430.
Chlortri brompropionic acid,—IV, 104.
— decomposition by alkaline hydrates,—V, 255.
Chrome iron ore, determination of chromium in,—III, 163.
Chromic acid, test for,—VII, 250.
— volumetric estimation in chromates and bichromates,—V, 216.
Chromic superfenuoride, action on benzoic acid,—VII, 343.
Chromium and mercury, salts of,—III, 351.
— camphorate,—X, 234.
— detection and estimation,—I, 364.
— determination,—IV, 472.
— determination in chrome iron ore,—III, 163.
— estimation in the presence of organic matter,—V, 41.
— extraction from iron ores,—VIII, 437.
— phosphate,—IV, 471.
— preparation of metallic,—I, 70.
Index of Subjects.

Chromium, salts of,—III, 351.
— separation of vanadium from,—VII, 349.
Cinchonine, decomposition by sodium ethylate,—VII, 182.
Cincinnati Chemical Society, organization,—II, 440.
Cinnamic acid, synthesis,—V, 205.
— ether, action of sodium acetacetic ether on,—IX, 117.
Citraconic acid, behavior towards aniline,—IX, 198.
— behavior towards secondary and tertiary aromatic amines,—IX, 193.
Citraconic ether, action of sodium acetacetic ether on,—IX, 118.
Citric acid, titration with potassium permanganate,—III, 201.
Clothing, materials and processes connected with,—II, 259.
Coal, condition of sulphur in,—IV, 8.
Coal tar distillation, applications of the products,—V, 132.
Cobalt and nickel, separation,—III, 230; VII, 134.
— delicacy of test for,—I, 211.
— detection of minute quantities,—I, 362.
— electrolytic deposition,—III, 230.
— electrolytic determination,—IV, 57.
— malleable,—I, 208.
— metallurgy,—I, 184.
— nitroprusside,—X, 223.
— separation from nickel,—IV, 471.
— volumetric determination,—II, 201.
Cobalt-benzene-sulphonate,—X, 139.
Cocaine, higher homologues of,—X, 145.
Cochineal as an indicator in determining ammonia,—VI, 61.
Coke, occlusion of gases by,—IV, 409.
Colliery explosions,—III, 298.
Coloring matter, new vegetable,—III, 22.
Coloring matters, artificial,—II, 262.
Columbates, methods of analysing,—V, 44, 73.
Columbite and tantalite, methods of dissolving in fluorhydric acid,—V, 50.
Columbite, orthite, and monazite from Amelia Co., Va.,—IV, 138.
Complex inorganic acids,—I, 1, 217; II, 217, 281; III, 317, 492; IV, 377; V, 361, 391; VII, 209, 313, 392; VIII, 289.
Conine, constitution,—II, 171.
Conservatism in chemistry,—I, 372.
Constitution of organic bodies in relation to their density and power to transmit light,—II, 352.
Copper, allotropic, formation and composition,—III, 354.
— and silver, relation of atomic weights,—X, 182.
— and zinc, solubility of the sulphides in melting potassium sulphide,—VII, 144.
— antimonide, occurrence in nature,—X, 60.
— atomic weight,—X, 187.
— deposition on iron in a magnetic field,—III, 157.
Index of Subjects.

Copper, electrolytic determination,—III, 354; IV, 58.
— improved apparatus for precipitating by electrolysis,—VI, 333.
— metallurgy,—I, 187.
— phthalate,—III, 30.
— separation from cadmium,—II, 42; VII, 134.
— separation from zinc,—V, 122.
— slag, analysis,—VIII, 429.
— specific heat,—II, 374.
Cork stoppers, oxidation of,—V, 68.
Corn, chemical composition as influenced by environment,—VI, 302.
Correspondence. Subsection of chemistry at Saratoga,—I, 291.
Corundum from Lehigh Co., Pa.,—V, 275.
Coto bark and its constituents,—I, 454.
Cotton-seed oil, density and refractive index,—X, 395.
Crafts, J. M. Prize from French Academy,—II, 79.

D

Cresol, from oxytoluic acid,—I, 114.

Dactylis geomerata, analysis of,—IV, 18.
Dehydrobenzoylacetic acid,—VIII, 101.
Densities of gases at high temperatures,—II, 98.
— and refractive indices of certain oils,—X, 392.
Density, vapor, of some inorganic bodies,—I, 213.
Deuteroalbumose,—VI, 46.
Deville, St. Claire. Obituary note,—III, 457.
— Resignation from the Ecole normale of Paris,—II, 79.
Deweylite from Berks Co., Pa.,—V, 280.
Dextrin,—VI, 70.
Index of Subjects.

Dextrose,—VI, 69,
 — and levulose, constitution,—VIII, 291.
Diamide or hydrazine, discovery,—IX, 309.
Dianiline silicotetrafluoride,—X, 171.
Diastase, influence of amount on rate of conversion,—VII, 312.
Diastatic action, determination,—VII, 306.
 — influence of acids and alkalies on,—VII, 309.
 — influence of time on,—VII, 310.
 — of saliva,—III, 305.
Diazobenzene, conduct of salts towards alcohol,—IX, 387.
 — decomposition of salts in toluene,—IX, 392.
Diazocompounds, decomposition in formic and acetic acids,—X, 368.
 — decomposition with alcohol,—VIII, 243; IX, 387.
Diazoo-sulphobenzoic acid,—IX, 415.
Diazotoluences, conduct of salts towards alcohol,—IX, 394.
Dibenzoylacetic acid,—VII, 257.
Dibenzoylmethane,—VII, 261.
Dibenzylidimethylammonium chloride,—IX, 80.
Dibromacrylic acid,—III, 113, 172; IV, 169.
 — and tribrompropionic acids, relations between,—IV, 176.
αβ-Dibrombutyric ethyl ether, behavior towards alkalies,—IX, 280.
β-Dibrom dichlorpropionic acid,—VI, 165.
Dibromiodacrylic and chlorbromiodacrylic acids,—IV, 92.
Dibrommaleic acid,—III, 98.
 — behavior towards aniline,—IX, 189.
Dibromoxanilide, nitro-derivatives,—IX, 361.
Dibrompyroxanthin,—III, 337.
Dibrompyroxanthintetram bromide,—III, 336.
Dibromstyrol,—V, 385.
Dichloracrylic acid,—III, 167.
 α-Dichloracrylic acid, crystalline form,—IV, 174.
 αβ-Dichlor butyric acid, behavior towards alkalies,—IX, 283.
 α-Dichlor brompropionic acid,—IV, 267.
β-Dichlort dibrompropionic acid,—IV, 270.
Dichlordiethoxy amido pyridine,—VIII, 396.
Dichlormdioxyamidopyridine,—VIII, 391.
Dichloroethox yamidopyridine,—VIII, 396.
Didimethylamine silicotetrafluoride,—X, 177.
Didymium, atomic weight,—IV, 76; V, 300.
 — oxide, quantitative estimation in mixtures with earthy oxides,—V, 80.
Diethylacetoacetate, action of phosphorus pentachloride on,—IV, 27.
Diethylamine-benzene-sulphonate,—X, 132.
Diethylamine-paratoluene-sulphonate,—X, 142.
Diethylamine uranate,—X, 220.
Diethylhydrobenzdiamidobenzene hydroxide,—V, 419.
Diethylbenzoylacetic acid,—VII, 165.
Index of Subjects.

Diethylorthotoluidine,—VII, 119.
Diethyloxybutyric acid,—III, 393.
—— action of hydriodic acid on,—III, 394.
—— action of hydrobromic acid on,—III, 395.
—— action of phosphorus pentachloride on sodium salt,—III, 392.
Difluorbenzoic acid,—VII, 346.
Digestibility of fish flesh in gastric juice,—VI, 318.
Digestion, gastric,—III, 360.
—— salivary,—III, 221.
Diiodobromacrylic and chlorbromacrylic acids,—III, 124.
Dimethylacetel,—V, 260.
Dimethylamine-benzene-sulphonate,—X, 131.
Dimethylamine-paratoluene-sulphonate,—X, 141.
Dimethyamine uranate,—X, 220.
Dimethyluric acid,—II, 305.
β-Dinitroparabromphenetol,—III, 185.
Dinitroparadibrombenzols and derivatives,—III, 184.
Dinitrophenylmercaptan,—VIII, 90.
Dinitrophenylsulphide,—VIII, 91.
Dinitrosulphocyanbenzene,—VIII, 89.
Diorthonitroparamidophenol,—V, 33.
Dioxyamidopyridine,—VIII, 377.
Dioxybenzoic acid,—II, 197.
Diparachlorbenzylamine,—II, 93.
Diparachlorbenzylsulphone,—II, 166.
Diparaiodbenzylamine,—II, 256.
Diphenylamine-benzene-sulphonate,—X, 135.
Diphenylamine-paratoluene-sulphonate,—X, 143.
Diphenyl sulphone,—IX, 68.
Dipropylacetic acid,—III, 389.
Dipropyl acetoacetate, action of sodium amalgam on,—III, 391.
Dipropyl acetone,—III, 390.
Dipropylbetaoxybutyric acid,—III, 391.
Dipropylethyl acetoacetate, preparation,—III, 386.
Dipyridine silicotetrafluoride,—X, 294.

"Discovery of the Periodic Law, and on Relations among the Atomic
Weights" (J. A. R. Newlands), review,—VI, 142.

Disinfectants,—II, 425; IV, 324.
Distillation, fractional, apparatus for,—X, 62.
—— in a vacuum, fractional, apparatus for,—X, 362.
Distillations, apparatus for quantitative,—IX, 23.
Distilled spirits, manufacture,—II, 149.
Disulphaminebenzoic acid,—II, 186.
Disulphobenzoic acid,—II, 188.
Draper, J. W. Obituary note,—III, 456.
Drying oils, fatty acids of,—X, 57.
Index of Subjects.

Dumas, J. B. A. Obituary note,—VI, 215.
Dyeing,—II, 266.
Dyestuffs, preparation,—II, 261.
Dysalbumose,—VI, 107.

E

Earth metals in samarskite,—IV, 327.
Electrolysis, new results in,—I, 329.
 —— of molybdenum solutions,—VII, 90.
 —— unusual case of,—I, 438.
Electrolytic estimations and separations,—VIII, 206.
 —— method as applied to iron,—X, 330.
Electrometallurgy,—I, 201.
Elementary analysis, absorption apparatus for,—VI, 353.
Elements, discussion of working hypothesis that they are compounds,—I, 10.
 —— genesis of,—IX, 232.
 —— new, position in natural system,—III, 454.
“Elements of Chemistry” (E. J. Houston), review,—VI, 136.
“Elements of Modern Chemistry” (A. Würtz), review,—VI, 134.
“Elements of Physiological and Pathological Chemistry” (T. C. Charles), review,—VIII, 291.
Elliott’s gas apparatus, improved form,—IX, 294.
Equivalents, apparatus for determining,—VI, 347.
 —— simple method of determining,—X, 73.
Etched figures and arrangement of atoms,—VIII, 222.
Ether, luminous incomplete combustion of,—IV, 317.
 —— manufacture,—I, 446.
Ethers, unsaturated, addition of sodium acetacetic ether to,—IX, 112.
Ethoxymetatoluic acid,—IV, 374.
Ethyl acetate, speed of saponification,—III, 340.
 —— acetoacetate, propyl derivatives and decomposition products of,—III, 385; IV, 27.
Ethyl alcohol, condensation compounds of benzil with,—VII, 16.
 —— decomposition by zinc chloride,—II, 22.
 —— manufacture,—I, 446.
 —— specific heat,—II, 374.
Ethyl aldehyde, action on orcin and resorcin,—V, 349.
 —— action of potassium salts on,—V, 186.
 —— action of sodium salts on,—V, 189.
 —— action of zinc chloride on,—V, 184.
 —— formation of crotonic and β-oxybutyric aldehydes from,—V, 182.
Ethylamine-benzene-sulphonate,—X, 132.
Index of Subjects.

Ethylamine-paratoluene sulphonate,—X, 142.
Ethylamine uraamate,—X, 220.
Ethylhydrobenzodiamidobenzene,—V, 421.
Ethyl benzoate, action of phosphorus pentachloride on,—IX, 213.
Ethylbenzoylecgonine,—X, 146.
Ethyl bromide, use,—I, 446.
Ethyl cinnamate, action of sodium malonic ether on,—IX, 114.
Ethyl cyanide, constitution of the addition product with chlorhydric acid,—VII, 71.
Ethyl diacetic acid in urine,—I, 365.
Ethylene, action of heat on,—VIII, 362.
—— changes effected by heat in the constitution,—VIII, 153.
Ethylene bromide, action on the sodium derivatives of the ethers of acetoacetic acid, etc.,—X, 446.
Ethylene, liquefied, use in producing low temperatures,—IV, 237.
Ethylbenzoylacetate, action of phosphorus pentachloride on,—VII, 268.
—— condensation with benzaldehyde,—VII, 271.
—— reduction of,—VII, 265.
Ethylbenzoylnitrosoacetate,—VII, 254.
Ethylbenzoylsuccinate,—VII, 368.
Ethyl dibenzoylsuccinate,—VII, 357.
Ethyl iodide, action on potassium para-mido-benzoate,—VII, 198.
Ethyl mustard oil, formation,—I, 416.
Ethylorthotoluidines,—VII, 118.
Ethyl-paratoluene sulphanide,—VIII, 241.
Ethyl phthalate,—I, 413.
“Etudes de Dynamique Chimique” (J. H. van’t Hoff), review,—X, 161.
Eupatorium and strychnine, relations,—I, 370.
Evaporation of corrosive liquids, removal of obnoxious vapors in,—VI, 144.
—— without fusion,—III, 153.
Explosive agents,—II, 423.
—— ice,—VII, 428.
Extraction of solids by a volatile solvent,—VIII, 73.
Eyster’s scheme for qualitative analysis,—VII, 110.

F

Fat in milk, Marchand’s method for determining,—VII, 238.
Fats and oils, examination of,—VI, 285.
—— notes on the HübI method of examining,—VI, 416.
Fatty acids of the drying oils,—X, 57.
Fatty series, syntheses by means of aluminium chloride,—X, 75.
Feeding-stuffs, composition and digestibility,—VIII, 47.
Ferric camphorate,—X, 234.
Index of Subjects.

Ferric oxide, specific heat,—II, 374.
— solutions, reduction,—IV, 282.
— sulphate, action on iron,—IX, 90.
Ferricyanide of potassium, oxidation of benzene derivatives with,—V, 97;
 VII, 145; VIII, 176; IX, 93; X, 472.
Ferrocyanide of potassium, manufacture,—I, 358.
Ferrous chloride, vapor density of,—VI, 210.
— sulphate, preservation of,—V, 122.
Filtering apparatus, simple, portable, quick,—IX, 142.
Filtration balance,—IV, 476.
— device for filtration of carbon,—I, 368.
— hot, with Bunsen pump,—III, 296.
— reverse, simple arrangement for,—IX, 143.
— with easily soluble and volatile filters,—VII, 87.
Fire damp in mines, detection,—I, 365.
First work in pure chemistry in America,—VII, 356.
Fish, chemistry of,—IX, 421; X, 1.
— flesh, digestibility in gastric juice,—VI, 318.
Flashing point of petroleum,—IV, 285, 293; VI, 18.
— forms of apparatus for determining,—V, 459.
Flavoring essences, artificial,—II, 150.
Flour,—VI, 393.
Fluoride of silicon, action on aniline,—X, 166.
— action on organic bases,—X, 165.
Fluorine, atomic weight,—IX, 461.
— free,—III, 300, 301.
— isolation,—VIII, 445.
— volumetric determination,—I, 27.
Fluorite from Lehigh Co., Pa.,—V, 272.
Fodders, sugars and starch in, and their determination,—X, 49.
Food, influence on proportions of albuminoids in cow's milk,—VII, 247.
— material used as,—II, 143.
"Foreign Phosphates" (Shepard), review,—I, 207.
Formic acid, synthesis,—II, 76.
Foundations of chemistry,—X, 333.
Fractional distillation, apparatus for,—VI, 178; X, 62.
— in a vacuum, apparatus for,—X, 362.
Freezing mixture,—X, 45.
Fruits, southern, analysis with reference to their food values,—X, 487.
Puchsine test for ammonia,—IV, 402.
— for nitric acid,—IV, 403.
Fuel and arrangements for artificial production of heat,—I, 60.
Fumaric acid, behavior towards aniline,—IX, 184.
Fumaric and maleic acids, anilides of,—IX, 235.
— isomerism,—IX, 253.
Index of Subjects.

Fumarimide, constitution,—IX, 252.
Funnel support,—VIII, 76.
Furfurol and derivatives,—III, 33, 98, 165.
— product of dry distillation of wood,—III, 34.
Fusel oil, detection and estimation,—IV, 295.

G

Gallic acid, test for,—II, 48; IV, 403.
Gallisin, an unfermentable substance in starch and sugar,—VI, 214.
Gallium in American blends,—II, 44.
— separation from other metals,—IV, 236.
Garnet from Lehigh Co., Pa.,—V, 276.
Gas absorption and measuring tube,—VII, 429.
— analysis, apparatus,—I, 105.
— apparatus, improved form,—X, 53.
— generator,—V, 143.
— illuminating,—III, 63.
— receiver for use in gas analysis,—IX, 418.
— regulator,—III, 378; IV, 155.
— volumes, apparatus which facilitates the correct reading of,—VII, 58.
Gases, apparatus for measuring and analysing,—VIII, 9.
— occluded by aluminium and magnesiu—,—II, 151.
— occluded by coke,—IV, 409.
— relative densities at high temperatures,—II, 98.
— transmission through fluids of different densities,—IV, 235.
Gastric digestion,—III, 360, 441; IV, 214, 461.
Gastric juice, digestibility of fish flesh in,—VI, 318.
— influence on diastatic action of saliva,—III, 305.
Geissler, H. Obituary note,—I, 74.
Genesis of the elements,—IX, 232.
Genthite from North Carolina, analysis of,—X, 44.
Germanium, discovery, etc.,—IX, 71.
— compounds of,—X, 245.
Germano-fluoride of potassium,—IX, 385.
German silver,—I, 199.
Gersdorffite, cobaltiferous,—I, 323.
Glaser's two monobromcinnamic acids,—IX, 379.
Glass, manufacture of,—II, 62.
Glaucnite,—VI, 412.
Glucinum, atomic weight,—II, 360, 435; VI, 215.
Glucose,—I, 452.
— in urine, value of Brücke's method of testing for,—VIII, 139.
— report on the manufacture,—VI, 137.
— volumetric determination,—I, 367.
Index of Subjects.

Glucoside group, synthetical researches in,—V, 171; VI, 336.
Glue and other cements,—II, 420.
Glutazine or dioxyamidopyridine,—VIII, 377.
Gluten determinations, time element in,—VI, 402.
Glyceroborates of calcium and sodium as antiseptics,—IV, 317.
Glycocholic ether,—I, 181.
Glycogen,—VI, 195.
Gold, metallurgy,—I, 195.
Gooch crucible,—I, 319; III, 297.
Gooch method of separating and treating precipitates,—I, 317.
Grape sugar crystallised from water,—IV, 239.
— estimation with standard solutions,—IV, 296.
Graphite from Ducktown, Tenn.,—II, 331.
Grasses, composition of American,—IV, 16.
Grenade, analysis of a hand fire,—X, 46.
Guaicol-glucoside,—VI, 339.
Guanidine, reactions for,—IX, 220.
Gum lac from Arizona,—II, 34.
Gummite,—I, 89.

H

Haemoglobin, molecular weight and formula,—V, 148.
Halogen compounds of lead,—X, 229.
— organic compounds, analysis,—I, 286.
Halogens contain no oxygen,—III, 379.
— determination in chlorates, bromates and iodates,—III, 69.
— determination in the side chains of aromatic hydrocarbons,—VI, 351.
— estimation in volatile organic compounds,—V, 211.
— in aromatic compounds, note on the Schulze process of determining,—VI, 415.
"Handbuch der organischen Chemie" (F. Beilstein), review,—II, 346.
Hay and fodders, determination of albuminoids in,—II, 81.
Haydenite,—VI, 24.
Heat, artificial production,—III, 58.
Heintz, W. Obituary note,—II, 440.
Helicin and phenolglucoside, synthesis of,—I, 305.
Helvite from Amelia Co., Va.,—IV, 478.
Heptane, bromination,—X, 237.
— from Pinus sabini ana,—I, 155; VI, 28.
Heptylene, action of chlorous acid upon,—X, 225.
Heteroalbumose,—VI, 101.
Heulandite,—VI, 412.
Hexametaphosphomolybdates,—VII, 406.
Hexane, decomposition by heat,—VIII, 3.
Hubner, H. Obituary note,—VI, 431.
Hydrazine, discovery,—IX, 309.
Hydrazine-ortho-toluene-sulphonic acid,—IX, 401.
Hydrazine-sulphobenzoic acid,—IX, 417.
Hydrazinetoluene sulphonic acids, action of concentrated sulphuric acid on, —VIII, 271.
Hydrocarbons, solid, occurrence in plants,—X, 439.
Hydrochloric acid, aqueous, coefficients of volatility,—X, 458.
—— detection,—II, 48.
—— gas, preparation,—III, 68.
—— manufacture,—I, 278.
Hydrocyanic acid, simultaneous oxidation and reduction with,—VII, 189.
Hydrofluoric acid, electrolysis of,—VIII, 445.
—— molecular weight,—III, 189.
Hydrogen,—IV, 400.
—— and oxygen, relative values of atomic weights,—X, 81, 191.
—— combustion of weighed quantities and atomic weight of oxygen,—X, 249.
—— determination of free,—II, 67.
—— explosion with oxygen,—I, 284.
—— manufacture,—I, 445.
—— nascent,—IV, 482.
—— new lines in the spectrum of,—II, 77.
—— occlusion by copper,—I, 285.
—— photograph of the spectrum,—I, 72.
—— purification,—II, 67.
—— separation from marsh gas and nitrogen,—I, 284.
Hydrogen dioxide, action on organic matters and fermentations,—IV, 323.
—— detection of,—VI, 355.
—— estimation,—I, 286.
—— in air, estimation,—III, 68.
—— in analytical chemistry,—V, 212.
—— in surgery,—IV, 323.
—— volumetric determination,—II, 199.
Hydrogen sulphide, action on arsenic acid,—X, 459.
—— apparatus,—IX, 143.
—— generator,—IV, 401; IX, 143.
—— preparation in chemico-legal examinations,—I, 68.
—— preparation,—I, 287; II, 68.
—— qualitative analysis without,—VII, 21.
—— removal of arsine from,—IX, 386.
—— substitution of ammonium hyposulphite for, in qualitative analysis,—V, 215.
—— test for,—V, 456.
Hydrogen superoxide in the air, estimation,—III, 68.
Hydroxy-benzoic acids, action of phosphorus pentachloride on the three isomeric,—X, 296.
Hydroxyl, quantitative determination,—IX, 82.
Hydroxyl-sulphobenzoic acid,—IX, 415.
Index of Subjects.

Hypochlorite of sodium, action on nitrogen compounds,—I, 286.
Hyponitrous acid, preparation and basicity,—IV, 322.
Hypophosphomolybdates,—V, 361.
Hypophosphotungstates,—V, 364.
Hyposulphurous acid, determination,—I, 288.

Ice, explosive,—VII, 428.
Illuminating gas, estimation in the air,—V, 123.
—— manufacture,—III, 63.
India rubber, gutta-percha, etc.,,—II, 267.
Indicators used in alkalimetry, comparative study of,—V, 458.
Indigo, Baeyer’s method of synthesis,—II, 438.
—— artificial,—III, 282; IV, 67.
Indium chloride, vapor density and formula,—I, 213.
Industrial chemistry, reports,—I, 58, 184, 273, 356, 440; II, 62, 143, 259, 417; III, 58, 139; IV, 392, 383; V, 52.
Ink, manufacture,—III, 143.
“Inorganic Chemistry” (V. von Richter), review,—VI, 135.
Inosite,—IX, 74.
Intermolecular rearrangement, cases of,—V, 203.
Intestines, digestion in,—IV, 214.
Iodobromacrylic acid,—III, 175.
Iodic acid, behavior as an indicator,—VI, 341.
Iodide of nitrogen,—I, 4.
—— of potassium, lead in,—I, 71.
—— of potassium, removal of iodate from by means of zinc amalgam,—X, 321.
Iodine, action on silver bromide, chloride and iodide,—VI, 352.
—— and bromine, separation,—VII, 249.
—— and chlorine, separation by a dry method,—VI, 352.
—— bromine and chlorine, detection,—VI, 346.
—— bromine and chlorine, estimation by electrolysis of silver salts,—VIII, 421.
—— density at high temperatures,—II, 78.
—— detection and determination in presence of chlorine and bromine,—II, 199; IV, 400.
—— detection in bromine,—III, 68.
—— determination in a mixture of chlorides, bromides and iodides,—VI, 353.
—— estimation in the presence of both chlorine and bromine,—VI, 352.
—— manufacture,—I, 440.
—— monochloride, action on aromatic amines,—I, 255.
—— oxygen acids of,—IX, 145.
—— solutions, standard, preparation using neutral potassium chromate,—VI, 353.
Index of Subjects.

Iodine, vapor density,—II, 108, 175; III, 72.
— volumetric determination,—II, 68.
Iridio-platinum,—I, 200.
Iridium phosphides,—V, 231.
Iron, action of ferric sulphate on,—IX, 90.
— amalgam,—I, 70.
— and copper sulphates, manufacture,—I, 361.
— and steel castings, processes for direct coppering,—IV, 157.
— and steel, manganese in,—IX, 58.
— and titanium, separation,—VII, 294.
— combined carbon in,—VI, 286.
— conduct towards nitrogen,—III, 134.
— determination by potassium permanganate,—V, 459.
— determination of phosphorus in,—VII, 296.
— determination of silicon in,—I, 147.
— electrolytic determination,—IV, 58; X, 330.
— electrolytic separation from aluminium,—IV, 59.
— electrolytic separation from manganese,—IV, 58.
— ingot, manufacture from phosphoric pig iron,—IV, 228.
— in hydrochloric acid solutions, determination,—IV, 359.
— metallurgy of,—I, 62.
— ores containing phosphoric and titanic acids, analysis of,—IV, 1.
— precipitation by ammonium succinate,—III, 231.
— pyrites, nitric acid sp. gr. 1.42 as a solvent for,—IV, 402.
— separation as basic acetate,—I, 251.
— specific heat,—II, 374.
Isoamyl alcohol,—VI, 244.
Isoamylamine-benzene sulphonate,—X, 133.
Isobutyl alcohol, decomposition by zinc chloride,—II, 23.
Isobutylamine-benzene sulphonate,—X, 133.
Isobutylamine uranate,—X, 221.
Isobutylbenzoyl cecgonine,—X, 148.
Isobutylene, action of bromine on,—IX, 87.
Isobutyric acid, action on aniline,—VII, 116.
Isocyranates, conversion into mustard oils,—VI, 257.
Isohexane, decomposition by heat,—VIII, 6.
Isomerism, a possible new kind of,—IV, 60.
Isophthalic sulphinide,—III, 209.
Isopicraminic acid,—V, 20.
Isoxylene, trinitro-, from American petroleum,—II, 437.
Itaconic acid, behavior towards aniline,—IX, 199.
— behavior towards secondary and tertiary aromatic amines,—IX, 193.
Index of Subjects.

J
Jamesonite,—I, 325.
Jarosite from a new locality,—II, 375.

K
Kalinite from Sevier Co., Tenn.,—VI, 97.
Kaolinite, analysis of a variety from Nelson Co., Va.,—VII, 178.
Kerosene oils, safety of,—X, 356.
Kjeldahl’s method of determining nitrogen, apparatus for,—VIII, 323.
Kolbe, H. Obituary note,—VI, 431.
Kunys,—VIII, 200.
"Künstliche organische Farbstoffe" (E. Noelting and P. Julius), review,—IX, 457.

L
Lactose in milks, determination by optical methods,—VI, 289.
Lamps, materials for burning in,—III, 62.
Landolt, H., appointment to chair of chemistry in the Agricultural College of Berlin,—II, 78.
Lanthanum, atomic weight,—IV, 76.
Lard oil, density and refractive index,—X, 399.
Laurent’s polariscope, graduation of,—VIII, 72.
Lead, action of vegetable acids on,—IV, 440.
—— bromiodide,—X, 232.
—— bromosulphocyanide,—X, 230.
—— chlorobromide,—III, 52.
—— chlorobromiodide,—X, 232.
—— chlorocyanide,—X, 231.
—— chlorosulphocyanide,—X, 229.
—— detection of minute quantities,—I, 364.
—— electrolytic determination,—IV, 58.
—— estimation as dioxide,—V, 413.
—— in crystals of potassium iodide,—I, 71.
—— iodosulphocyanide,—X, 230.
—— metallurgy,—I, 189.
—— new halogen compounds of,—X, 229.
—— nitrates, basic,—IX, 299.
Lecture apparatus, quantitative,—V, 353.
"Leçons de Chimie Élémentaire Appliquée aux Arts Industriels" (J. Girardin), review,—II, 214.
Ledoux, A. R., resignation from North Carolina Agricultural Experiment Station,—II, 79.
"Lehrbuch der Allgemeinen Chemie" (W. Ostwald), review,—VII, 281.
Index of Subjects.

"Lehrbuch der Organischen Chemie" (A. Kekulé), review,—III, 440.
Lepidolite, Hebron, extraction of caesium and rubidium from,—VI, 74.
Levulinic and maleic acids, constitution,—IX, 364.
Levulose and dextrose, constitution,—VIII, 291.
— preparation and properties,—IV, 69.
Library bindings, deterioration of,—I, 293.
Liebig monument,—I, 74; VI, 76.
Light, artificial production,—III, 60.
Lime burning,—II, 418.
Linoleic acid,—X, 57.
Liquefied gas, use in producing low temperatures,—IV, 237.
Liquid paraffin, reagent for the detection of water in alcohol, chloroform and ether,—VI, 355.
Lithium picrate,—I, 153.
— reagent for,—VII, 133.
— separation from potassium and sodium,—IV, 59.
— separation from sodium and potassium with amyl alcohol,—IX, 33.
— spectroscopic determination,—VII, 35.
Ludus, sensitiveness as an indicator,—V, 217.
Liver, bile and glycogen,—VI, 195.
Lockyer's hypothesis that the elements are compound bodies,—I, 15.

M

Magnesium and calcium, separation from sodium and potassium,—IX, 49.
— determination,—II, 71.
— occlusion of gases in,—II, 151.
— sensitive reagent for,—I, 362.
— sulphate, manufacture,—I, 360.
Magnetic rotary polarisation of compounds in relation to their chemical constitution,—VI, 356.
Magnetism, influence on chemical action,—VI, 430.
Magnetite, extraction of vanadium from,—VII, 349.
Maleic acid, anilides of,—IX, 235.
— behavior towards aniline,—IX, 183, 197.
— constitution,—IX, 364.
Maleic and fumaric acids, isomerism,—IX, 253.
Maleinil,—IX, 238.
Malic acid, reversal of direction of rotation,—II, 150.
— titration with potassium permanganate,—III, 201.
Malic and tartaric acids, optical properties,—VII, 120.
Manganese amalgam,—I, 70.
— argentan or German silver,—I, 199.
— borate,—IV, 358.
— camphorate,—X, 233.
Index of Subjects.

Manganese compounds with fluorine,—IX, 460.
— determination,—I, 363.
— electrolytic determination,—IV, 58.
— electrolytic separation from iron,—IV, 58.
— higher chlorides of,—IX, 459.
— higher oxides and acids corresponding to them,—X, 240.
— in steel and iron,—IX, 58.
— mineral, new,—III, 420.
— separation and determination,—II, 73.
— sesquioxide, compound with cupric oxide,—IX, 269.
— sulphide, solubility in melting potassium sulphide,—VIII, 436.
— tetroxide,—IX, 459.
— trioxide,—IX, 458.
— volumetric determination,—V, 290.

Manganese-benzene-sulphonate,—X, 137.

Manganous-aluminic sulphate from Sevier Co., Tenn.,—VI, 97.

Marsh-Berzelius method for the detection of arsenic, quantitative efficiency,—VII, 338.

Matches, manufacture,—III, 65.

Material for standard weights and measures,—I, 67.

Measures, standard, material for,—I, 67.

Meat, extracts,—II, 144.
— preserving,—II, 144.

"Medical Student's Manual of Chemistry" (R. A. Witthaus), review,—V, 466.

Medina sandstone, analysis,—X, 224.

Melting point, determinations,—V, 357.

Melting points, mercury thermometers with reference to the determination of,—V, 307.

Menacconite,—VI, 413.

Mercuric camphorate,—X, 234.
— compounds, detection,—VII, 355.
— sulphide, action of nitric acid on,—VIII, 75.

Mercurous-benzene-sulphonate,—X, 139.

Mercurous hydrate,—VIII, 426.
— nitroprusside,—X, 222.

Mercury and chromium, salts of,—III, 351.
— apparatus for purification of by distillation in a vacuum,—VII, 60.
— detection,—III, 230.
— metallurgy,—I, 190.
— purification,—I, 68, 213, 362.
— specific heat,—II, 374.

Mercury thermometers, use in determining melting and boiling points,—V, 307.

Mesitylene, experiments with,—II, 130.
Index of Subjects.

Mesitylene, note on the oxidation of mono-nitro,—VII, 268.
 —— sulphamide, oxidation,—II, 131.
Mesitylenic sulphinide,—II, 133; III, 216.
Mesolite from Fritz Island, Pa.,—IV, 357.
Metaazoxybenzanilide,—V, 5.
Metabolism,—IV, 465; V, 219.
Metabrombenzaldehyde,—III, 32.
Metabrombenzylibromide,—I, 97.
Metabromtoluene, oxidation,—VIII, 185.
Metachloridosalicylic acid,—VIII, 95.
Metachlornitrosalicylic acid,—I, 179.
Metachlorosalicylic acid, products obtained by nitration,—I, 176.
Metadichloroxanilic acid,—VIII, 353.
Metahydroxybenzoic acid, action of phosphorus pentachloride on,—X, 303.
Metals, new,—I, 452.
Metamerism, two remarkable cases of,—II, 359.
Metamidoparasulphobenzoic acid,—I, 347.
 a-Metamidosalicylic acid,—V, 22.
Metanitroparasulphobenzoic acid,—I, 343.
 a-Metanitrosalicylic acid,—V, 21.
Metanitrotoluene, oxidation,—VII, 149.
Metastasis,—II, 426.
Metasulpho-cinnamic acid,—IV, 167.
Metatoleuesulphamide, oxidation,—IV, 142; VIII, 186.
Meteorite, from Highland Co., Va., analysis of a supposed,—VIII, 427.
Methyl acetate,—V, 260.
 Methyl alcohol,—V, 260; VI, 244.
 —— decomposition by zinc chloride,—II, 21.
 —— uses,—I, 445.
 • Methyl aldehyde, determination,—V, 460.
 —— preparation,—I, 418.
Methylamine-benzene-sulphonate,—X, 130.
Methylamine-paratoluene-sulphonate,—X, 141.
Methylamine uranate,—X, 220.
Methyl arbutin, identity of natural and synthetical,—VI, 336.
 —— synthesis,—V, 176.
Methyl chloride,—I, 445.
 —— production,—I, 72.
Methyl conine, synthesis,—II, 171.
Methylene iodide, action of sodium phenylsulphinate on,—VI, 253.
Methyl formate,—V, 259.
Methyl iodide, action on asparagine,—VI, 419.
 —— action on potassium paramido-benzoate,—VII, 195.
Methyl orange, sensitiveness as an indicator,—V, 217.
Index of Subjects.

Methyluric acid, oxidation,—II, 311.
Microlite from Amelia Co., Va.,—III, 130.
Microzyma cretae,—IV, 453.
Migration of atoms,—I, 420.
Milk analysis,—III, 291; IX, 100.
— determination of fat in, by Marchand's method,—VII, 238.
— digestion in the stomach,—IV, 463.
— estimation of albuminoids in,—VII, 246.
— influence of food on proportions of albuminoids in,—VII, 246.
— sugar, specific rotary power of,—VI, 289.
Mineral, new, from Colorado,—IV, 140.
Minerals from Berks Co., Pa.,—V, 279.
— from Fritz Island, Pa.,—IV, 356.
— from Lehigh Co., Pa.,—V, 272.
Mineral waters, artificial,—II, 150.
Minium, volumetric determination of the value of,—II, 202.
Mirror amalgam, composition,—VIII, 430.
Molecular structure and absorption spectra of carbon compounds,—III, 373.
Molybdenum solutions, electrolysis of,—VII, 90.
Molybdic acid, determination,—IV, 404, 476.
Monazite from Amelia Co., Va.,—IV, 138.
Monobromacetone, action of ammonium sulphocyanide on,—X, 213.
Monobrombenzylbromides, action of water on,—III, 260.
— comparison of the three,—III, 255.
\(\alpha \)-Monobromcinnamic acid,—V, 385.
Monobromcinnamic acids,—IX, 379.
\(\alpha \)- and \(\beta \)-Monobromcrotonic acids,—II, 11.
Monochloracetic acid, action of phosphorus pentachloride on,—IX, 215.
\(\alpha \)-Monochlordinitrophenol aniline,—I, 180.
Monoethylphthalate,—I, 413.
Monometaphosphomolybdates,—VII, 405.
Monometaphosphotungstates,—VII, 401.
Mononitromesitylene, oxidation,—VIII, 268.
Monoparachlorbenzylamine,—II, 94.
Monoparaiodobenzylamine,—II, 257.
Mordants,—II, 265.
Morphine, constitution,—III, 454.
— in opium, determination,—X, 247.
— new series of bases derived from,—IV, 70.
— transformation into codeine and homologous bases,—III, 383.
Mortar and hydraulic cement,—II, 418.
Mosandra,—I, 454.
Mucilage, manufacture,—III, 144.
Mucobromic acetanhydride,—III, 46.
Mucobromic acid, action of dry bromine on,—III, 47.
Index of Subjects.

Mucobromic acid and salts,—III, 39.
— conduct with oxidising agents,—III, 102.

Mucochloric acid,—III, 165.

Mucophenoxybromic acid,—VI, 187.

Mucoxybromic and mucoxychloric acids,—IX, 147.

Mucoxychloric acid,—IX, 159.

Mustard oils, conversion of organic isocyanates into,—VI, 257.

Mustard oil from black mustard, density and refractive index,—X, 397.
— preparation,—IV, 321.

N

Naphthalene, action of phthalic anhydride on,—I, 267.
— derivatives, oxidation of,—V, 106.

Naphthalenesulphamides, oxidation of,—V, 106.

α-Naphthylamine-benzenesulphonate,—X, 135.

α-Naphthylamine-paratoluenesulphonate,—X, 144.

Nesslerising, tube-stand for,—IV, 313.

Nets and sails, methods for the preservation of,—V, 440.

Neutrality, absolute, determination,—VIII, 211.

NH₃, pretended compound,—IV, 315.

Nichols, W. R. Obituary notice,—VIII, 443.

Nickel amalgam,—I, 70.
— and cobalt, determination,—II, 72.
— and cobalt, electrolytic deposition,—III, 230.
— and cobalt, malleable,—I, 208.
— and zinc, separation,—VI, 149.
— camphorate,—X, 235.
— detection in the presence of cobalt,—II, 201.
— electrolytic determination,—IV, 58.
— metallurgy,—I, 184.
— nitroprusside,—X, 223.
— separation from cobalt,—III, 230; IV, 471; VII, 134.
Nickel-benzenesulphonate,—X, 138.

Nickeliferosous talc, analysis of,—X, 45.

Nicotinic acid from pyridine,—III, 456.

Nitrates, determination in waters,—III, 367.
— reduction by ferments,—IV, 452.

Nitre manufacture,—I, 356.

Nitric acid, ammonium ferrous sulphate as a reagent for,—V, 209.
— determination,—II, 69; V, 121; VII, 132; VIII, 274.
— determination as nitric oxide,—I, 289.
— in soils, determination by Schloßing’s method,—IV, 318.
— manufacture,—I, 278.

Nitric and nitrous oxides, experiment showing composition by volume,—VIII, 92.

Nitric oxide, absorbents for,—IV, 403.
— gas from the reduction of nitric acid, estimation,—V, 121.
Index of Subjects.

Nitrification,—III, 73.

— in ammonium chloride solutions,—II, 45.

Nitrile of anhydrobenzdiadamidobenzene,—V, 415.

Nitriles, determination,—IV, 403.

Nitrogen, apparatus for absolute determination,—IV, 42.

— apparatus for determining by the copper oxide method,—VI, 234.

— apparatus for Kjeldahl’s method of determining,—VIII, 323.

— atmospheric, acquisition by plants,—VI, 365.

— atmospheric, liberation from compounds and acquisition by plants,—VIII, 398.

— comparison of the copper oxide and Ruffle methods of determining,—VI, 234.

— determination,—II, 27, 69; IV, 404; V, 216.

— determination by combustion with calcium hydroxide,—VI, 60.

— determination in agricultural products,—I, 77.

— determination with soda-lime, absorption of ammonia in,—X, 111.

— in organic compounds, detection,—VII, 132.

— in organic compounds, Kjeldahl’s method of determination,—VII, 130.

— iodide,—I, 4, 208.

— iodide, influence of light upon explosion of,—X, 332.

— liquefaction,—V, 146.

— loss by plants during germination and growth,—VIII, 327.

— peroxide, absorption spectrum,—VII, 32.

— soda-lime method of determining,—IX, 311.

— source of error in the determination of,—VII, 131.

— sources of error in determinations by soda-lime,—X, 113, 197, 262.

— tetroxide, conduct towards sulphuric acid,—IV, 75.

Nitrogenous organic compounds, analysis of,—III, 69.

β-Nitroisophthalic acid,—X, 485.

Nitromesitylene, oxidation,—VIII, 265.

Nitrometatoluic acid, preparation,—III, 426.

Nitrometaxylene, oxidation,—III, 424; X, 485.

Nitroparadibrombenzol, atomic migration in the molecule,—III, 186.

α-Nitroparatoluic acid, nitrile of,—X, 482.

β-Nitroparatoluic acid,—X, 477.

— nitrile of,—X, 476.

Nitroparaxylene, oxidation of,—X, 474.

Nitrophenetol, para,—I, 271.

Nitroprussides, new,—X, 222.

Nitrosulphobenzoic acid and derivatives,—I, 340.

Nitrotetraphthalic acid,—X, 483.

Nitrotoluuenes, oxidation with potassium ferricyanide,—V, 99.

Nitrotoluenesulphamide, oxidation,—VIII, 169.

Nitrous acid as a test for gallic acid,—IV, 403.

— detection of traces,—II, 69.

— test for,—IV, 403.
Index of Subjects.

Nitrous acid, volumetric determination in nitrites,—V, 388.
Nitrous oxide as an anesthetic,—I, 67, 302.
—— preparation and analysis,—IV, 403.
Nitrous and nitric oxides, lecture experiment showing composition by volume,—VIII, 92.
Nitrotoluenesulphamide, oxidation,—VIII, 169.
Nitroxylené, symmetrical, oxidation,—IV, 322.
Nomenclature, chemical,—IV, 311.
Norvegia,—I, 454.
Noxious vapors, removal in the evaporation of corrosive liquids,—VI, 144.

Oats, American, chemical composition and physical properties,—VIII, 364.
Obituary notes,—III, 436; VI, 431.
Oil, ethereal, from California bay tree,—II, 38.
Oils and fats, Hübli method for the examination of,—VI, 416.
—— detection of adulterations in,—VII, 92.
—— examination of,—VI, 285.
—— illuminating, for burning in lamps,—III, 62.
Oleomargarine, manufacture and use,—II, 145.
—— method of analysis,—X, 322.
Olive oil, density and refractive index,—X, 393.
Opium alkaloids,—II, 358.
—— analysis,—VIII, 295; X, 164.
—— determination of morphine in,—X, 247.
Optically active substances, artificial preparation,—VI, 120.
Orcin, action of chloral hydrate on,—IX, 134.
—— action of salicylic acid on,—V, 95.
—— action with benzoic aldehyde,—IX, 133.
—— and resorcin, action of ethyl aldehyde on,—V, 349.
Organic analysis by combustion, modifications of the methods of,—X, 433.
Organic bases, action of fluoride of silicon on,—X, 165.
Organic bodies, relation between physical properties and chemical composition,—III, 450.
Organic compounds, detection of nitrogen in,—VII, 132.
—— method for determining nitrogen in,—VII, 130.
Organic matter, determination in potable water,—IV, 241, 334, 426.
—— in water, determination,—II, 68.
Organic nitrogen, estimation,—IV, 404.
"Organische Chemie" (F. Beilstein), review,—II, 346.
"Organische Chemie" (A. Kekulé), review,—III, 442.
Orthite from Amelia Co., Va.,—IV, 138.
Orthoamidoparasulphobenzoic acid,—I, 353.
Orthoaizoxybenzanilide,—VI, 26.
Orthobrom a-toluic acid,—II, 316.
Orthobrombenzaldehyde,—III, 32.
Orthobrombenzyl alcohol,—II, 315.
Orthobrombenzylamines,—II, 317.
Orthobrombenzylbromide,—I, 100.
— action of sodium on,—II, 391.
— synthesis of anthracene and phenanthrene from,—II, 383.
Orthobrombenzyl compounds,—II, 315.
— cyanide,—II, 316.
Orthochloroparanitrophenetol,—II, 1, 121.
Orthocresol from oxytoluic acid,—I, 114.
Orthoiodobenzyl bromide and its derivatives,—IV, loi.
Orthoiodotoluolsulphonic acid,—VI, 170.
Orthometaphospho-tungstates,—VII, 404.
Orthosulphamine-benzoic acid,—I, 431; VIII, 179.
Orthosulphobenzoic acid,—I, 433.
— preparation,—IX, 399.
Orthotoluenesulphamide, oxidation,—I, 426; VIII, 178.
Orthotoluidine-benzene-sulphonate,—X, 135.
Orthotoluidine-paratoluene-sulphonate,—X, 144.
Orthotolyphthalamic acid,—IX, 53.
Orthotolyphthalimide,—IX, 51.
Osmyl ditetramine,—III, 233.
Oxalates containing chromium,—III, 197.
Oxalic acid, manufacture,—I, 279.
Oxanilide, halogen derivatives of,—VIII, 349.
— nitro derivatives,—IX, 355.
Oxidation and reduction, simultaneous, with hydrocyanic acid,—VII, 189.
— in the blood,—V, 145.
— of benzene derivatives with potassium ferricyanide,—V, 97; VII, 145; VIII, 176; IX, 93; X, 472.
— of substitution products of aromatic hydrocarbons,—I, 32, 114, 426; II, 50, 130, 405, 413; III, 204, 424; IV, 142, 197; V, 106, 149; VIII, 262.
— physiological,—IV, 395.
— with potassium permanganate,—VIII, 262.
Oxidising substances, volumetric determination,—III, 367.
Oxyacids, aromatic, action on phenols,—V, 81.
β-Oxybutyric aldehyde, formation from ethyl aldehyde,—V, 182.
Oxygen absorbed by water, determination,—II, 67; III, 66.
— absorption by pyrogallol in alkaline solution,—III, 366.
— acids of iodine,—IX, 143.
— active,—IV, 73.
— and hydrogen, relative values of atomic weights,—X, 81, 191.
— atomic weight,—X, 21, 249.
Index of Subjects.

Oxygen gas, manufacture and use,—I, 444.
— in the blood, estimation,—I, 285.
— in the sulphuric acid chamber, estimation,—I, 285.
— liquefaction,—V, 146.
— permeability of silver for,—VI, 283.
— photographic observations of the spectrum,—I, 71.
Oxyisophthalic acid (or o-phenol dicarbonic acid),—I, 131.
Oxymetatoluic acid, derivatives,—IV, 186.
a-Oxyphthalic acid,—VI, 282.
Oxytoluic acid, derivatives,—IV, 186.
— from sulphamineparatoluic acid,—II, 54.
Oysters, sewage in,—III, 380.
Ozocerite,—VI, 247.
Ozone, absorption of solar rays by atmospheric,—III, 153.
— action on carbon monoxide,—I, 373.
— action on coloring matter of plants,—I, 291.
— action on germs in the air,—III, 152.
— alleged, as a preservative,—III, 384.
— bleaching of sugar syrups by,—I, 291.
— formation and destruction,—III, 72.
— in the air,—II, 279; III, 67.
— liquefaction,—IV, 238.
— properties,—II, 433.
— solubility in water,—I, 292.
— transformation into oxygen by heat,—IV, 50.

P

Paints, vehicles for,—II, 422.
Palladium, rhodium and platinum, conduct towards illuminating gas,—III, 154.
Palmitic acid and the palmitins,—VI, 217.
— determination,—VI, 219.
— preparation,—VI, 217.
Palmitins, synthesis,—VI, 224.
Paper, manufacture,—III, 142.
Paraamidobenzoin sulphaneide,—VIII, 172.
Paraamidodimethyl aniline as a test for hydrogen sulphide,—V, 456.
Paraamidoorthosulphobenzoiic acid,—I, 351; IX, 410.
Paraamidophenol,—I, 271.
Paraazoacetanilide,—V, 282.
Paraazoaniline,—V, 283.
Paraazoxybenzanilide,—V, 284.
Paraazoxyacetanilide,—V, 2.
Paraazoxyaniline,—V, 3.
Index of Subjects.

Parabromalphatoluic acid,—III, 248.
Parabrombenzaldehyde,—III, 32.
Parabrombenzoic acid, preparation,—IX, 84.
— anhydride,—IX, 86.
— sulphinide,—VIII, 229.
Parabrombenzylalcohol,—III, 246.
Parabrombenzylamines,—III, 250.
Parabrombenzylbromide,—I, 95.
Parabrombenzyl compounds,—III, 246; V, 264.
Parabrombenzylcyanide,—III, 247.
Parabrombenzyldisulphide,—V, 269.
Parabrombenzylmercaptan,—V, 268.
Parabrombenzylmercaptid,—V, 268.
Parabrombenzylsulphide,—V, 267.
Parabrombenzylsulphoacid,—V, 264.
Parabrombenzylsulphone,—V, 267.
Parabromonthonitrophenetol,—III, 20.
Parabromoxanilic acid,—VIII, 354.
Parachlorbenzylalcohol,—II, 88.
Parachlorbenzaldehyde,—III, 31.
Parachlorbenzylamines,—II, 91.
Parachlorbenzylbromide,—I, 102.
Parachlorbenzylchloride,—II, 85.
Parachlorbenzyl compounds,—II, 85, 158.
Parachlorbenzylcyanide,—II, 88.
Parachlorbenzyldisulphide,—II, 168.
Parachlorbenzylethyl ether,—II, 170.
Parachlorbenzylmercaptan,—II, 167.
Parachlorbenzylmercaptid,—II, 168.
Parachlorbenzylsulphide,—II, 166.
Parachlorbenzylsulphoacid,—II, 159.
Parachlorbenzylsulphocyanate,—II, 91.
Parachlor-α-toluic acid,—II, 89.
Paracresy1 acetate,—X, 371.
Paradiazoothotoluenesulphonic acid, conduct towards alcohol,—VIII, 243.
Paradibromomethoazoacetanilide,—VIII, 347.
Paradibromoxanilide,—VIII, 351.
Paradiethylbenzenesulphamide,—IV, 200.
Paradijodoxanilide,—VIII, 352.
Paradinitro-oxyanilide,—IX, 355.
Paradipropylbenzenesulphamide, oxidation of,—V, 165.
Paradipropybenzenesulphonic acid,—V, 162.
Paraethoxybenzoic sulphinide,—VIII, 227.
Paraffin, liquid, reagent for detecting water in alcohol, chloroform and ether,—VI, 355.
Paraffins, liquid, action of heat on,—VIII, 1.
Index of Subjects.

Paraformnitranilide,—VIII, 346.

Parahydroxybenzoic acid, action of phosphorus pentachloride on,—X, 368.

Paraiodobenzaldehyde,—III, 32.

Paraiodobenzylacetate,—II, 251.

Paraiodobenzylalcohol,—II, 251.

Paraiodobenzylamines,—II, 255.

Paraiodobenzylbromide,—I, 103.

Paraiodbenzylicyanide,—II, 253.

Paraiodbenzyl compounds,—II, 250.

Paraiodbenzylsulphocyanate,—II, 255.

Paraiodo-f'-toluic acid,—II, 253.

Paraiodoxanilic acid,—VIII, 357.

Paramidoorthosulphobenzoic acid,—I, 351.

Parahydrodisulphaminebenzoic acid,—II, 186.

Paranitro and paraamidophenetol,—I, 271.

Paranitrobenzoic sulphinate,—VIII, 167.

Paranitroorthosulphobenzoic acid,—I, 349.

Para-oxy-meta-toluic acid, derivatives,—IV, 186.

Paraphenylene acetate, action of phosphorus pentachloride on,—IX, 211.

Parasulphaminebenzoic acid,—VIII, 182.

Parasulphaminecinnamic acid,—IV, 165.

Paratoluenesulphamide, oxidation,—II, 50; VIII, 266; IX, 93.

Paratoluenesulphonic acid, sulphoterephthalic acid from,—II, 413.

Par-oxy-m-toluic acid, derivatives,—IV, 186.

Peanut oil, density and refractive index,—X, 398.

Perfumes, manufacture,—III, 141.

Periodic acid, constitution,—IX, 143.

Periodic law, discovery of,—VI, 142.

Permanganate of potassium, use in presence of hydrochloric acid,—III, 231.
Index of Subjects.

Pernitric acid, formation,—III, 72.
Petrocine, a product of the destructive distillation of petroleum,—I, 30.
Petrocine, American,—II, 436.
— Caucasian,—II, 360; III, 301.
— commercial,—III, 302.
— flashing point of,—I V, 285, 293; VI, 18.
— forms of apparatus for determining flashing point,—V, 459.
Phenacetoin, sensitiveness as an indicator,—V, 217.
Phenanthrene, constitution,—II, 388.
— synthesis from α-brombenzylobromide,—II, 383.
Phenetol,—IX, 392.
— derivatives,—I I, 20.
α-Phenoldicarbonic acid,—I, 131.
Phenol glucoside, action of acetic anhydride on,—V, 171.
— synthesis,—I, 305.
Phenol phthalein as an indicator in alkalimetry,—III, 55.
— sensitiveness, as an indicator,—V, 217, 218.
Phenols, action of aldehydes on,—V, 338; IX, 130.
— action of aromatic oxyacids on,—V, 81.
Phenoyxyacetic acid, action of phosphorus pentachloride on,—IX, 216.
Phenoxybromacrylic acid,—VI, 190.
Phenoxybrommaleic acid,—VI, 193.
Phenyl acetate,—X, 369.
— action of phosphorus pentachloride on,—IX, 207.
Phenyaspartanil,—IX, 248.
Phenylaspartic acid,—IX, 245.
Phenyldibromlactic acid,—V, 386.
Phenylparatoluene sulphamide,—VIII, 242.
Phenyl propiolic acid, preparation,—VII, 153.
— propionate, action of phosphorus pentachloride on,—IX, 212.
— sulphinate of sodium, action on methylene iodide,—VI, 253.
— sulphonacetatic ethers, properties of,—V, 116; VII, 65.
β-Phenyltribrompropionic acid,—V, 383.
Phenyl-tribrompropionic acid, decomposition by water,—IV, 25.
Philippia,—I, 453.
Phloroglucinol, action with benzoic aldehyde,—IX, 132.
Phosphates, acid, manufacture,—VII, 135.
— commercial, basis for establishing the valuation,—VIII, 63.
— determination of reverted,—IV, 123.
Phosphide of hydrogen, determination,—I, 289.
Phosphides of iridium and platinum,—V, 231.
Phosphodivanadates,—VII, 217.
Phosphophytophospho-tungstates,—VII, 332.
Phosphonium and arsenium compounds, constitution of,—III, 299.
Phosphor-bronze,—I, 198.
Phosphoric acid, determination,—I, 84, 290; II, 70, 200; IV, 183, 404.
Phosphorosoc-phospho-molybdates,—VII, 332.
Phosphoric acid, determination by the molybdenum method,—V, 216.
 — estimation as magnesium pyrophosphate,—I, 391.
 — in iron ores,—IV, 1.
 — in phosphates, determination,—III, 360.
 — reversion of,—VI, 1.
 — volumetric determination,—V, 121; VII, 132.
Phosphorosomolybdates,—V, 366; VII, 324.
Phosphorosophosphotungstates,—VII, 331.
Phosphorosotungstates,—VII, 321.
Phosphorus anilide,—VI, 93.
 — carbon in,—VI, 72.
 — in iron and steel, determination,—VII, 296.
 — manufacture,—I, 442.
 — oxyiodide,—III, 280.
 — pentachloride, action on acetanilide,—IX, 217.
 — pentachloride, action on ethers of organic acids, and on acetic acid derivatives,—IX, 205.
 — pentachloride, action on three isomeric monohydroxybenzoic acids,—X, 296.
 — pentachloride, action on phenylacetate,—IX, 207.
 — pentasulphide, vapor density and formula,—I, 213.
 — quantitative estimation of carbon in,—VI, 153.
 — reduction of carbonic acid by,—I, 291.
 — trichloride, action on aniline,—VI, 89.
 — valence,—VII, 354.
 — white,—IV, 459.
Phosphotungstates,—II, 217.
Phospho-vanadates,—VII, 209.
Phospho-vanadico-vanadates,—VII, 220.
Phospho-vanadio-molybdates,—V, 391.
Phospho-vanadio-tungstates,—V, 394.
Phospho-vanadio-vanadico-tungstates,—V, 408.
Phosphuranylite,—I, 92.
Phthalamic acid,—III, 28.
Phthalate, mono-ethyl,—I, 413.
Phthaleins, new class of compounds analogous to,—VI, 180.
Phthalic acids, behavior towards aniline,—IX, 202.
 — manufacture,—I, 447.
Phthalic anhydride, action on naphthalene in the presence of aluminium chloride,—I, 267.
Phthalic sulphinide,—VI, 262.
Phthalamid,—III, 26.
"Physiological and Pathological Chemistry" (T. C. Charles), review,—VIII, 291.
Index of Subjects.

Physiological chemistry, reports,—II, 204, 268; III, 221, 360, 441; IV, 214, 461; V, 219; VI, 195.

Physiological oxidation,—IV, 395.

Picene,—III, 74.

Picraminic and isopicraminic acids and derivatives, comparison,—V, 37.

Pigments, artists',—III, 145.

— for house painters' use,—II, 421.

Pinus sabiniana, heptane from,—I, 155; VI, 28.

Piperidine, transformation into pyridine,—I, 454.

Piscidia, the active principle of Jamaica dogwood,—V, 39.

Plant physiology and chemistry,—II, 339.

Plants, acquisition of atmospheric nitrogen by,—VI, 365.

— approximate analysis of,—I, 377.

Platinum, atomic weight,—III, 155.

— conduct towards illuminating gas,—III, 154.

— new compounds of,—III, 350.

— phosphides,—V, 231.

— silicide,—VII, 172; VIII, 428.

— vessels, heated by gas flame, condition of atmosphere within,—X, 148.

Polariscope, Laurent's, note on the graduation,—VIII, 72.

Porcelain, manufacture,—II, 66.

Potash and soda, separation and determination in plant ashes, etc.,—III, 422.

— manufacture,—I, 280.

Potassium and sodium, separation of chlorides from lithium chloride by amyl alcohol,—IX, 33.

— bichromate, manufacture and use,—I, 358.

— bichromate, volumetric determination,—IV, 472.

— chlorate, manufacture,—I, 357.

— chloride, manufacture,—I, 357.

— chromate, alkalinity of,—IV, 472.

— chromate, use in preparing standard iodine solutions,—VI, 353.

— cyanide, decomposition,—X, 235.

— cyanide, manufacture,—I, 359.

— estimation in plant ashes,—I, 361.

— ferricyanide, oxidation of benzene derivatives with,—V, 97; VII, 145; VIII, 176; IX, 93; X, 472.

— ferrocyanide, manufacture,—I, 358.

— germanofluoride,—IX, 385.

— iodide, lead in,—I, 71.

— iodide, manufacture,—I, 441.

— iodide, removal of iodate from,—X, 321.

— nitrate, specific heat,—II, 374.

— permanganate, determinations with,—III, 231.
Index of Subjects.

Potassium permanganate, oxidation by means of,—VIII, 262.
— phthalate,—III, 29.
— reagent for detecting,—IV, 59.
— sulphate, manufacture,—I, 357.
— sulphide, solubility of sulphides of copper and zinc in,—VII, 144.

Potatoes, composition,—IX, 103.

Pottery, colors for glazing,—I, 294.

Precipitates, separation and treatment,—I, 317.

Pressure, union of bodies by,—VI, 129, 212; X, 243.

"Principien der Organischen Chemie" (E. Lellmann), review,—IX, 456.
"Principles of Chemistry" (P. Muir), review,—VI, 423.
"Principles of Theoretical Chemistry" (I. Remsen), reviews,—V, 465; IX, 457.

Propenyl-tricarboxylic acid, action of bromine on,—IX, 219.
Propionate,—III, 448.

Propimine sulphocyanide,—V, 227.
Propionic acids, constitution of the substituted,—IV, 273; V, 251; IX, 1.
— tetrasubstituted,—IV, 263.
Propyl alcohol,—VI, 243.
— decomposition by zinc chloride,—II, 23.

Propyl-benzoyl-ecgonine,—X, 147.

Propylethyl acetoacetate, preparation,—III, 385.
Protalbumose,—VI, 36.

Prout’s hypothesis and the atomic weight of silver,—VII, 104.

Ptomaines, reagent for distinguishing from vegetable alkaloids,—III, 382.

Publications relating to chemistry,—I, 75, 215, 301, 375, 456; II, 79, 216, 440; III, 74, 155, 303; IV, 158, 327, 408; V, 304; VI, 133, 146, 364, 433; VII, 430; IX, 145; X, 79.

Purpurogallin,—X, 48.

Putrefaction, volatile products of,—V, 138.

Pyridine, action of chlorine on,—VIII, 308.
— and quinoline bases, researches on,—V, 60; VII, 200.
— derivatives, synthesis,—VIII, 375.

Pyrogallol, action with benzoic aldehyde,—IX, 131.

Pyrolusite from Lehigh Co., Pa.,—V, 277.

Pyrometer,—IX, 296.

Pyromucic acids, substituted,—X, 373, 409.

Pyrophospho-tungstates,—VII, 396.

Pyroxanthin,—III, 332.

Pyrorol, conversion into pyridine,—IV, 323.
— and carbazol, relations between,—X, 440.
— and thiophene groups,—VI, 75.
Index of Subjects.

Q

Qualitative determination of bases without hydrogen sulphide,—VII, 21, 110.
Qualitative methods, new,—VII, 249.
"Quantitative Analysis" (A. Classen), review,—I, 207.
Quartz, artificial production of crystallised,—III, 302.
Quinine, artificial (?),—IV, 157.
— composition and examination of the commercial sulphate,—VII, 138.
Quinoline and its recent synthetical formation,—IV, 63.
— and pyridine bases, researches on,—VII, 200.
— bases, researches on,—V, 64.
— derivatives in medicine,—V, 72.

R

Reduction and oxidation with hydrocyanic acid,—VII, 189.
Reductions with zinc and ammonia,—V, 1, 282.
Reimer's chloroform aldehyde reaction,—I, 420.
Resacetophenone,—VII, 275.
Research fund in England,—II, 152.
Resocyanin, constitution of,—V, 434.
Resorcin, action of ethyl aldehyde on,—V, 349.
— action of salicylic acid on,—V, 89.
— as a reagent for detecting aldehydes,—IX, 134.
Respiration of plants,—III, 145.
Reverted phosphoric acid, determination,—IV, 123, 183.
Rhodium, conduct towards illuminating gas,—III, 154.
Ricinoleic acid,—X, 59.
River water, investigation,—II, 358.
Rosaniline test for nitrous acid,—IV, 403.
Rosin, separation from fats,—III, 416.
Rubber joints, oxidation of,—V, 68.
Rubidium and caesium, metallic,—III, 456.
— compounds, extraction from Hebron lepidolite,—VI, 74.

S

Saccharine,—I, 452.
— or benzoic sulphinide,—I, 428.
Sails, methods of preserving,—V, 440.
Salicin, synthesis from synthetical helicin,—V, 172.
— and arbutin, constitution of,—V, 179.
Salicylic acid, action of phosphorus pentachloride on,—X, 296.
Salicylic acid, action on phenols,—V, 83.
— detection in wine,—II, 202.
— manufacture,—I, 447.
— substitution products obtained from,—VIII, 95.
— synthesis,—II, 338.
Salicyl orcin ether,—V, 95.
Salicylphenol,—V, 84.
Salicylresorcin ether,—V, 91.
Saligenin, synthesis,—II, 19.
Saliva, action in the stomach,—III, 228.
— diastatic action of,—III, 305.
— human, alkalinity and diastatic action of,—IV, 329.
Salivary digestion and the products formed,—III, 221.
— relative stability,—II, 329.
Samaria,—I, 454.
Samarium and its compounds,—V, 471.
— atomic weight,—V, 300, 471.
Samariskite, earth metals in,—IV, 327.
— methods of analysing,—V, 44, 73.
Sandstone from Lockport, N. Y., analysis,—X, 224.
Saponification of ethyl acetate, speed of,—III, 340.
Scandium, occurrence and properties,—I, 453.
Seeds, effect of temperature on the vitality and germination of,—II, 339.
Selenious acid, constitution,—IX, 461.
Separation and treatment of precipitates,—I, 317.
Sesame oil, density and refractive index,—X, 397.
Sewage in oysters,—III, 380.
— oxidation,—X, 26.
Shot, analysis,—VIII, 432.
Silicates, chemical structure of the natural,—X, 120.
— effective method of decomposition,—IV, 56.
— treatment with hydrochloric acid to determine structure,—X, 405.
Silicious earth,—VI, 247.
Silicon,—IV, 314.
— fluoride, action on organic bases,—X, 165.
— in pig iron and steel, determination,—I, 147.
— monoxide,—IX, 14.
— tetrafluoride, action on acetone,—X, 209.
Silicotetrafluorides, constitution,—X, 178.
— of certain bases,—X, 294.
Silver and copper, relation of atomic weights,—X, 182.
— atomic weight and Prout’s hypothesis,—VII, 104.
— bromide and chloride, modifications of,—V, 225.
— bromide, chloride and iodide, action of bromine and iodine on,—VI, 352.
Silver chloride, action of light on,—VI, 407.
 — determination,—IV, 279.
 — electrolytic deposition,—III, 229.
 — metallurgy,—I, 192.
 — permeability for oxygen,—VI, 283.
 — qualitative and quantitative determination,—IV, 470.
 — salts, convertibility by alkaline haloids,—VIII, 421.
 — separation from lead,—III, 230.
 — specific heat,—II, 374.
 — subchloride, so-called,—VIII, 196.
Sinapic acid,—VI, 50.
Sinapine, investigations on,—VI, 50.
 — sulphocyanate,—VI, 51.
Smyth, G. A. Resignation from University of Vermont,—II, 79.
Soap, manufacture,—III, 139.
Soda industry, present condition of,—V, 52.
 — in plant ashes, separation and determination,—III, 422.
 — manufacture,—I, 281.
Sodium acetacetic and malonic ethers, constitution of,—X, 158.
 — new reactions with,—IX, 124.
Sodium acetacetic ether, action on cinnamic ether,—IX, 117.
 — action on citraconic ether,—IX, 118.
 — addition to unsaturated organic ethers,—IX, 112.
Sodium ammonium and lithium, reagent for,—VII, 133.
 — and potassium chlorides, separation from lithium chloride with amyl
 alcohol,—IX, 33.
 — and potassium, separation from magnesium and calcium,—IX, 49.
 — carbonate and nitrate, insolubility of sulphides of copper and zinc
 in,—VII, 144.
 — chloride manufacture,—I, 359.
 — ethylate, action on mixtures of amides and ethers,—IX, 221.
 — ethyl oxide, action on bromethylidenebromide,—V, 192.
 — hydroxide, impurities in the commercial,—IV, 59.
 — nitrate,—I, 359.
 — sulphate, manufacture,—I, 359.
Sodium malonic ether, action on ethyl cinnamate,—IX, 114.
 — action on a-bromacrylic ether,—IX, 119.
Soils, artificial, experiments on,—VI, 4.
Spanish minerals,—I, 323.
Specific gravity determinations,—II, 174; V, 240.
 — heat, apparatus for determining,—II, 361.
 — volumes and boiling points, relations between,—V, 70.
Spectroscopic investigations,—I, 301.
Spigelina, a new volatile alkaloid,—I, 154.
Spirits, distilled, manufacture,—II, 149.
Stannic oxide, precipitation from sodium stannate,—IV, 285.
Stanno-phospho-molybdates,—VII, 409.
Stanno-phospho-tungstates,—VII, 407.
Stannous nitrates,—IV, 325.
Starch, action of acetyl chloride and acetic anhydride on,—V, 359.
— and its transformations under the influence of acids,—VI, 67.
— and sugar in fodders, and their determination,—X, 49.
— elementary composition,—IV, 319.
— estimation,—VI, 68.
— rapidity of conversion into sugar,—III, 227.
— soluble,—VI, 69.
— transformation into dextrose,—VI, 69.
Starch-sugar, report on the manufacture,—VI, 137.
Steel and ingot iron, manufacture from phosphoric pig iron,—IV, 228.
— and iron, manganese in,—IX, 58.
— cast iron and wrought iron, relative oxidability of,—V, 144.
— combined carbon in,—VI, 286.
— composition of carbonaceous residue from,—III, 241.
— determination of phosphorus in,—VII, 296.
— determination of silicon in,—I, 147.
Stenhouse, J. Obituary notes,—II, 440; III, 457.
Stilbene, formation and derivatives,—I, 312.
Stilbite,—VI, 414.
— from Berks Co., Pa.,—V, 279.
— from Lehigh Co., Pa.,—V, 277.
Stomach, digestion in,—IV, 214.
Stone and brick, manufacture,—II, 417.
Stopcock,—I, 209.
Stopper for combustion tubes, asbestus,—III, 151.
Strecker’s “Text-Book of Organic Chemistry” (J. Wislicenus), review,—IV, 154.
Strontianite, artificial production,—IV, 316.
Strontium camphorate,—X, 235.
— saccharate,—V, 141.
— separation from calcium,—V, 121.
Strychnine, alleged transformation of brucine into,—VI, 73.
— and eupatorium, relations,—I, 370.
— test,—I, 369.
Stucco,—II, 419.
“Studies from the Laboratory of Physiological Chemistry, Sheffield Scientific School” (R. H. Chittenden), review,—VIII, 71.
Succinic acid, behavior towards secondary and tertiary aromatic bases,—IX, 195.
Sugar determination,—II, 203.
Sugar, manufacture,—II, 145.
—— maple, percentage of sugar in sap,—I, 293.
—— modification of Böttger's test for,—II, 47.
—— separation from molasses and syrups by strontium saccharate,—V, 141.
Sugars and starch in fodders, and their determination,—X, 49.
—— probable synthesis of one of the,—IX, 234.
Sulfinide benzoic. See Sulphinide.
Sulphamimebenzoic sulphinide,—II, 186.
Sulphamineethylbenzoic acid,—IV, 201.
Sulphamimeisophthalic acid and salts,—III, 210.

\[p \]-Sulphaminemesitylenic acid,—II, 139.
Sulphaminemetatoluic acid,—I, 41.
—— oxidation,—III, 204.
Sulphamineparatoluic acid,—II, 51.
—— formation,—IX, 98.

\[a \]-Sulphaminephthalic acid,—V, 109.
\[\beta \]-Sulphaminephthalic acid,—V, 111.

\[a \]-Sulphaminepropylbenzoic acid,—V, 165.
Sulphamine sulphpbenzoic acid,—II, 194.

Sulphamine terephthalic acid,—IX, 94.
Sulphamineuvitic acid,—II, 137.

Sulphides, decomposition by ammonium salts,—I, 287.
Sulphinide, benzoic,—I, 428; VIII, 223.
—— ethers of,—IX, 406.
—— isophthalic,—III, 209.
—— mesitylenic,—II, 133; III, 216.
—— paraamidobenzoic,—VIII, 172.
—— parabrombenzoic,—VIII, 229.
—— paranitrobenzoic,—VIII, 167.
—— parethoxybenzoic,—VIII, 227.
—— terephthalic,—II, 58.

Sulphinides, investigations on,—VI, 260; VIII, 223; IX, 406.
Sulphinidoterephthalic acid, amide of,—II, 410.

\[\beta \]-Sulpho-\[\beta \]-brompyromucic acid,—X, 409.
Sulphocinnamic acids,—IV, 161.
Sulphofumaric acid and salts,—X, 415.
Sulphoisophthalic acid,—I, 121; III, 214.
—— salts of,—I, 126; III, 206.

\[a \]-Sulphomesitylenic acid, transformation into ortho-oxymesitylenic acid,—III, 220.
—— transformation into the sulphinide,—III, 219.
Sulphomesitylenic acids,—III, 217.

Sulphonates, aromatic, conversion into the corresponding amino compounds,—IX, 75.

Sulphon-fluorescein,—IX, 372.
Sulphonic acids, decomposition with hydrated sulphuric acid,—VI, 182.
Index of Subjects.

Sulphonphthaleins,—VI, 180.

α-Sulphophthalic acid,—V, 107; VI, 279.

β-Sulphophthalic acid,—V, 110.

Sulphopyromucic acids,—X, 373.

β-Sulphopyromucic acid,—X, 418.

Sulphoterephthalic acid,—II, 56, 405.

— action of phosphorus pentachloride and ammonia on,—II, 409.

— from paraxylenesulphonic acid,—II, 413.

— salts of,—II, 406.

Sulphotoluic acid,—II, 411.

Sulphoxyarsenic acid,—X, 461.

Sulphur,—I, 273.

— atomic refraction,—V, 70.

— condition in coal and its relation to coking,—IV, 8.

— determination in sulphides and in coal and coke,—II, 69, 401.

— estimation in illuminating gas,—II, 244; IV, 401; V, 120.

— extraction,—VI, 63.

— in organic bodies, determination,—V, 120, 207.

— in pyrites, determination,—II, 199.

Sulphuretted hydrogen, action on arsenic acid,—X, 459.

— apparatus,—IX, 143.

— generator,—IV, 401.

— preparation,—I, 287; II, 68.

— preparation in chemico-legal examinations,—I, 68.

— removal of arsine from,—IX, 386.

— substitution of ammonium hyposulphite for, in qualitative analysis,—V, 215.

— test for,—V, 456.

Sulphuric acid, estimation,—IV, 402.

— estimation in the presence of organic matter,—V, 41.

— free, detection in presence of aluminium sulphate,—V, 456.

— manufacture,—I, 275.

— specific heat,—II, 374.

"Sulphuric acid and Alkali" (G. Lunge), review,—II, 342.

Sulphurous acid, determination,—I, 288.

— and sulphites, oxidation of solutions,—X, 40.

— in the air, estimation,—IV, 401.

— in wines,—IV, 401.

Sulphurous anhydride, action on benzene,—IX, 67.

Superoxides, volumetric determination,—III, 367.

Superphosphates, basis for establishing the commercial valuation,—VIII, 63.

— method of analysis,—VI, 16.

"Sur la Constitution de la Naphthaline et de ses Dérivés" (F. Reverdin and E. Noelting), review,—X, 163.
Index of Subjects.

"Synthèse des Minéraux et des Roches" (F. Fouqué and A. Michel-Lévy), review,—V, 127.

Syntheses in the fatty series by means of aluminium chloride,—X, 75.

T

Talc, analysis of nickeliferous,—X, 45.
Tanning,—II, 266.
Tantalite, methods of dissolving in fluorhydric acid,—V, 50.
Tar, animal,—I, 374.
Tartaric acids, optical properties,—VII, 120.
Tartaric, citric and malic acids, titration with potassium permanganate,—III, 201.
Tartrates of antimony,—V, 241.
— constitution,—II, 319.
Tellurium, quadrivalence towards chlorine,—IX, 385.
— sulphur trioxide,—IV, 320.
Temperature regulator,—V, 287.
Terephthalic sulphonic acid,—II, 58; IX, 97.
Tetrabromdinitrobenzol,—X, 291.
Tetrabrompropionic acid,—IV, 264; V, 251.
Tetrachloramidopyridine,—VIII, 393.
Tetrachloramidopyridine,—VIII, 393.
Tetralic acid, bromhydric acid addition-products,—IX, 277.
Thermochemical investigations on the theory of carbon compounds,—II, 347.
 "Thermochemical Researches" (J Thomsen), reviews,—V, 293; VI, 202.
Thermochemistry, foundations of,—V, 147.
Thermometers, calibration,—V, 308.
— mercury, with reference to determinations of melting and boiling points,—V, 307.
Thiophene and its derivatives,—VIII, 51.
— and pyrrol groups,—VI, 75.
— a new substance in benzene from coal tar,—V, 300.
Thorium, atomic weight,—IV, 405.
Thulia,—I, 453.
Timber, preservation,—II, 420.
Tin, action of vegetable acids on,—IV, 440.
— antimony and arsenic, separation,—VII, 133.
— Clarke's method of separation from arsenic and antimony,—I, 244.
— detection in the presence of antimony,—IV, 474.
— electrolytic determination,—IV, 58.
— metallurgy,—I, 185.
— note on a test for,—V, 72.
Index of Subjects.

Tinfoil, analyses of,—IV, 451.
Titanic acid, determination in iron ores,—IV, 3.
— precipitation,—IV, 211.
Titanic oxide in soils,—X, 36.
Titanite,—VI, 412.
— from Berks Co., Pa.,—V, 280.
Titanium and aluminium, separation,—VII, 283.
— and iron, separation,—VII, 294.
— detection and estimation,—V, 122.
— production by the action of sodium at low temperatures,—VI, 74.
Toluenedisulphamide, oxidation,—II, 185.
α-Toluenedisulphonic acid and its derivatives,—II, 181.
Toluene, metabrom, oxidation of,—VIII, 185.
Toluenesulphochloride, liquid,—I, 170.
Toluidine-sulphonic acids, separation,—VIII, 274.
Toluol, action of bromine on,—II, 1.
Tourmaline from Lehigh Co., Pa.,—V, 275.
“Traité de Chimie Général” (P. Schützenberger), review,—III, 433.
Triamidotritinitrobenzol,—X, 287.
Triamidotritinitrobenzol,—X, 290.
Triamine disilicotetrafluoride,—X, 166.
Tribenzoyle methane,—VII, 264.
Tribromacrylic acid and salts,—III, 178.
— crystalline form,—IV, 277.
Tribromisobutane,—IX, 88.
Tribrompropionic acid,—II, 17.
Tribrompropionic and dibromacrylic acids, relations between,—IV, 176.
Tribromtrinitrobenzol,—X, 283.
Trichinoline disilicotetrafluoride,—X, 175.
Trichloracrylic acid,—IX, 3.
Trichloramidopyridine,—VIII, 391.
Trichlorbenzol, symmetrical, action of nitric acid on,—IX, 348.
Trichloridinitrobenzol,—IX, 353.
Trichlorethoxyamidopyridine,—VIII, 395.
Trichloroxyamidopyridine,—VIII, 392.
Trichlorophenoxyethylene,—IX, 208.
Trichlorotrinitrobenzol,—IX, 354.
Trimethylamine disilicotetrafluoride,—X, 177.
Tridimethylamine disilicotetrafluoride,—X, 175.
Tridiphenylamine disilicotetrafluoride,—X, 174.
Triethylamine-benzene sulphonate,—X, 133.
Triethylamineparatoluene sulphonate,—X, 143.
Triethylamine uranate,—X, 221.
Trimethylamine-benzene sulphonate,—X, 131.
Trimethylamine paratoluene sulphonate,—X, 141.
Trimethylamine, production from vinasses,—I, 72.
Index of Subjects.

Trimethylamine uranate,—X, 220.
Trimethylene derivatives,—VI, 207.
Trimonochloraniline disilicotetrafluoride,—X, 173.
Trinitroisoxylene fluoride, from American petroleum,—II, 437.
Trinitrosodimethylaniline disilicotetrafluoride,—X, 294.
Triorthotoluidine disilicotetrafluoride,—X, 173.
Trioxypyridine anhydride,—VIII, 387.
Triparachlorbenzylamine,—II, 92.
Triparaiodbenzylamine,—II, 255.
Triparatoluidine disilicotetrafluoride,—X, 173.
Tripyridine disilicotetrafluoride,—X, 295.
Triquinoline disilicotetrafluoride,—X, 175.
Tropic acid, synthesis,—II, 436.
Tropine, dismemberment,—IV, 322.
Trypsin, proteolytic action in neutral, alkaline and acid solution,—VII, 46.
— influence of bile on the proteolytic action of,—VII, 50.
Tscheffkinite from Nelson Co., Va., analysis of,—X, 38.
Tube-stand for nesslerising,—IV, 313.
Tungstates, acid, titration,—VIII, 16.
Tungsten, atomic weight,—VIII, 280.
Tungstic acid, estimation,—V, 123.
Turmeric acid,—VI, 84.
— oil,—IV, 368.
— substances obtained from,—IV, 77, 368; VI, 77.
Turmerol,—IV, 368; VI, 81.
— isobutyl ether,—IV, 373.
Turmerylchloride,—IV, 371.

U

Uchatius, F. v. Obituary note,—III, 457.
“Ueber die räumliche Anordnung der Atome in organischen Molekuln” (J. Wislicenus), review,—IX, 453.
Umbellulic acid from nut of California bay tree,—IV, 206.
Union of bodies by pressure,—VI, 129, 213; X, 243.
Uranates of ammonium and of certain amines,—X, 219.
Uranine,—I, 69.
— absorption spectrum,—I, 211.
— test for bromine,—I, 70.
Uranium, atomic weight,—IV, 240.
— estimation and separation by electrolysis,—I, 329.
— investigation on,—IV, 474; V, 124.
— minerals from North Carolina,—I, 87.
— new salts of,—II, 331.
Uranotil,—I, 88.
Uranous salts, determination,—IV, 475.
Index of Subjects.

Urea, determination,—II, 204.
— estimation by sodium hypobromite,—IV, 47.
— estimation of,—VII, 142.
— formation,—V, 219.
— from ammonia and carbon dioxide,—IV, 35.
— in aqueous solution, detection,—V, 461.
— production from benzene, ammonia and the air,—III, 380.
— source of error in estimating by the hypobromite method with the
 Russell and West apparatus,—VIII, 124.
Uric acid, constitution,—V, 198.
— constitution and formula,—VI, 360.
— ethers of,—II, 305.
— synthesis,—IV, 406.
Urine, determination of nitrogen in,—I, 289.

V
Vanadates,—VII, 229.
Vanadic acid, determination,—I, 364.
— separation from the metals,—V, 123.
Vanadico-vanadates,—VII, 229.
Vanadio-molybdates,—V, 369.
Vanadio-tungstates,—V, 378.
Vanadio-vanadico-molybdates,—V, 402.
Vanadio-vanadico tungstates,—V, 405.
Vanadium and chromium, extraction from iron ores,—VIII, 437.
— conduct of compounds towards reagents,—VII, 349.
— extraction from magnetite,—VII, 349.
— quantitative determination,—VII, 349.
— separation from chromium,—VII, 349.
Vapor densities, estimation,—V, 71.
Vapor tensions, apparatus for,—V, 325.
Varnishes,—II, 422.
Varvacite from Wythe Co., Va., analysis of,—X, 41.
Vegetable acids, action on lead and tin,—IV, 440.
— coloring matter, new,—III, 22.
Vegetables, preserved,—II, 145.
Vesuvianite from Berks Co., Pa.,—V, 280.
Vinasses, trimethylamine and methyl chloride from,—I, 72; II, 149.
Vinegar, manufacture,—II, 149.
Viscosity, specific, relation to chemical composition,—III, 453.
Voorhees, H., note in regard to,—III, 426.
Index of Subjects.

W

Washing, materials used in,—III, 140.
Water, absorbing apparatus for, in elementary analysis,—VI, 353.
— analysis, ammonia method in,—IV, 188, 479.
— determination of minute quantities of carbon in,—I, 287.
— determination of nitrates in,—III, 367.
— in the air, determination,—III, 67.
— river,—II, 358.
— synthesis of, lecture experiment,—II, 246.
Water-bath, constant,—V, 140, 141.
— heated by steam,—III, 296.
Water-gas tar, anthracene from,—VI, 248, 431.
Waters, free oxygen and organic matter in natural,—III, 367.
Watts, H. Obituary note,—VI, 432.
Wavellite, etc., from Lehigh Co., Pa.,—V, 273.
Weights and measures, material for,—I, 67.
Weith, W. Obituary note,—III, 458.
Wheat and corn, chemical composition as influenced by environment,—VI, 302.
— chemical composition of the products obtained by roller milling,—VI, 388.
Whiskies, examination of,—VII, 425.
Wine, manufacture,—II, 147.
Wintergreen oil, action of gas from As₂O₃ and HNO₃ on,—VIII, 99.
Witherite, strontianite and calcite, artificial production,—IV, 316.
Wöhler, F. Obituary note,—IV, 289.
Wöhler monument,—IV, 483; VII, 429.
Wood, products of the dry distillation at low temperatures,—V, 256.
Wrought iron, steel and cast iron, relative oxidability of,—V, 144.

X

Xanthine, transformation into theobromine and caffeine,—IV, 72.
Xylenesulphamides, benzoyl derivatives,—IV, 192.
— oxidation,—I, 37, 114; III, 205.
a-Xylidine,—III, 432.
Xylidinic acid,—I, 119.

Y

Ytterbium, occurrence and properties,—I, 452.
Yttrium, atomic weight,—IV, 483.
Index of Subjects.

Z

"Zeitschrift für Physikalische Chemie" (W. Ostwald and J. H. van't Hoff),
review,—IX, 133.

Zinin, M. Obituary note,—II, 79.

Zinc and ammonia, some reductions with,—V, 1, 282.
— and cadmium nitrates, basic,—IX, 304.
— and calcium alloys,—X, 70.
— and nickel, separation,—VI, 149.
— atomic weight as determined by composition of the oxide,—X, 311.
— chloride, decomposition of alcohols by,—II, 20.
— determination,—I, 362; II, 72.
— dust, determination of value,—II, 201; VII, 52.
— electrolytic determination,—IV, 58.
— metallurgy,—I, 184.
— oxide, supposed dissociation of,—X, 148.
— separation from cadmium,—III, 229.
— separation from copper,—III, 229; V, 122.
— separation in ores, etc.,,—VI, 151.
— sulphide, solubility in melting potassium sulphide,—VII, 144.
— volumetric estimation,—IV, 53, 470.

"Zinc, pure," from the Bertha Zinc Co., analysis,—VIII, 431.

Zircon from Lehigh Co., Pa.,,—V, 273.